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Abstract. Due to its light mass, of order ΛQCD, the strange quark can play a special role in chiral symmetry
breaking (χSB): differences in the pattern of χSB in the limits Nf = 2 (mu, md → 0, ms physical) and
Nf = 3 (mu, md, ms → 0) may arise due to vacuum fluctuations of ss̄ pairs, related to the violation
of the Zweig rule in the scalar sector and encoded in particular in the O(p4) low-energy constants L4

and L6. In case of large fluctuations, we show that the customary treatment of SU(3) × SU(3) chiral
expansions generates instabilities upsetting their convergence. We develop a systematic program to cure
these instabilities by resumming non-perturbatively vacuum fluctuations of ss̄ pairs, in order to extract
information about χSB from experimental observations even in the presence of large fluctuations. We
advocate a Bayesian framework for treating the uncertainties due to the higher orders. As an application,
we present a three-flavor analysis of the low-energy ππ scattering and show that the recent experimental
data imply a lower bound on the quark mass ratio 2ms/(mu + md) ≥ 14 at 95% confidence level. We
outline how additional information may be incorporated to further constrain the pattern of χSB in the
Nf = 3 chiral limit.

1 Introduction

Light quarks have their own hierarchy of masses. On
one hand, mu and md are much smaller than any in-
trinsic QCD scale, and their non-zero values induce only
small corrections to the SU(2) × SU(2) chiral limit, in
which mu = md = 0. A systematic expansion in mu and
md, keeping all remaining quark masses at their physi-
cal values, defines the two-flavor chiral perturbation the-
ory (χPT) [1]. On the other hand, the mass ms of the
strange quark is considerably higher (see, e.g., [2] and ref-
erences therein for recent determinations); indeed, it is
nearly of the order of ΛQCD, the characteristic scale de-
scribing the running of the QCD effective coupling. Never-
theless, a slowly convergent SU(3) × SU(3) chiral expan-
sion is conceivable [3]. This is suggested from a comparison
of the kaon mass MK with the mass scale ΛH ∼ 1 GeV of
(strange) QCD bound states not protected by chiral sym-
metry: M2

K/Λ2
H ∼ 0.25–0.30. Due to the rather specific
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value of ms, the strange quark plays a special role among
all six quarks.
(i) ms is small enough to be used as an expansion pa-
rameter (at least in some restricted sense) and to relate
properties of the QCD vacuum in the SU(3)×SU(3) chi-
ral symmetry limit mu = md = ms = 0 to observable
quantities.
(ii) Unlike mu, md, the strange-quark mass is sufficiently
large, ms ∼ ΛQCD, to influence the magnitude of order pa-
rameters characteristic of the SU(2) × SU(2) chiral limit
mu, md = 0 with ms fixed at its physical value.
(iii) At the same time, ms is not large enough to sup-
press loop effects of massive s̄s vacuum pairs. This is to
be contrasted with heavy quarks Q = c, b, t for which
mQ � ΛQCD and the effect of Q̄Q pairs on the vacuum
structure is expected to be tiny.

The above remarks single out the role of massive
strange sea quarks, and suggest a possibly different behav-
ior for Nf = 2 and Nf = 3 chiral dynamics. The origin
of this difference clearly appears in connection with the
possibility that in the vacuum channel (JPC = 0++) the
Zweig rule and the 1/Nc expansion break down. This is
strongly suggested by scalar meson spectroscopy [4], sum
rule studies [5–8], as well as by instanton-inspired mod-
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els [9]1. Furthermore, the enhancement of Zweig-rule vi-
olating effects of s̄s pairs on chiral order parameters has
a natural theoretical interpretation as a consequence of
fluctuations of the lowest eigenvalues of Euclidean QCD
Dirac operator, in particular of their density [10]. These
fluctuations would only affect quantities dominated by the
infrared end of the Dirac spectrum [11]; however, this is
precisely the case of chiral order parameters such as the
quark condensate and the pion decay constant. (Most of
the observables not protected by chiral symmetry are not
especially sensitive to small Dirac eigenvalues, and they
have no particular reason to break the Zweig rule or the
1/Nc expansion.) Fluctuations of small Dirac eigenvalues
lead to a large long-range correlation between 0+ massive
s̄s and massless ūu + d̄d pairs. This correlation enhances
the SU(2) × SU(2) order parameters,

Σ(2) = − lim
mu,md→0

〈ūu〉|ms=physical , (1)

F (2)2 = lim
mu,md→0

F 2
π |ms=physical , (2)

by a contribution which is induced from vacuum s̄s
pairs. The “induced condensate” and “induced decay con-
stant” [11,12] are proportional to ms and vanish in the
SU(3) × SU(3) chiral limit mu = md = ms = 0. As a
result the Nf = 3 condensate Σ(3) and the decay con-
stant F (3)2 can be substantially suppressed compared to
the corresponding two-flavor order parameters,

Σ(2) > Σ(3) = Σ(2)|ms=0 , (3)
F (2)2 > F (3)2 = F (2)2|ms=0 . (4)

The existence of this paramagnetic effect and its sign can
be expected on general theoretical grounds [11], but its
magnitude depends on the size of fluctuations of small
Dirac eigenvalues, which is hard to infer from first princi-
ples. A general discussion of the interplay between chiral
order and fluctuations in the QCD vacuum can be found
in [13].

The main question to be asked is: how can the effect
of vacuum fluctuations on chiral symmetry breaking be
detected experimentally? Recall that two-flavor order pa-
rameters are most easily accessible via low-energy ππ scat-
tering. Using accurate recent data [14], we have inferred
values for the Nf = 2 condensate and decay constant;
expressed in suitable physical units, we found [15]

X(2) =
(mu + md)Σ(2)

F 2
πM2

π

= 0.81 ± 0.07 , (5)

Z(2) =
F (2)2

F 2
π

= 0.89 ± 0.03 . (6)

The fact that both X(2) and Z(2) are rather close to 1 in-
dicates that, as long as ms is kept at its physical value, the
effect of non-zero mu, md is indeed small. This in turn sug-
gests that the standard two-flavor χPT is a well-behaved
expansion [1]; its leading order, described by the decay

1 It should also be visible in fully unquenched lattice simu-
lations.

constant F 2 ≡ F (2)2 and by the Nf = 2 quark conden-
sate Σ(2) ≡ F 2B, is dominant. On the other hand, the
three-flavor order parameters Σ(3) and F (3)2 are more
difficult to pin down, since they require an extrapolation
to ms = 0. The latter necessitates the use of three-flavor
χPT, including more observables such as the masses and
decay constants of the whole octet of Goldstone bosons,
the K–π form factors, K–π scattering amplitude, etc. The
Nf = 3 χPT involves more low-energy constants starting
in order O(p4), and higher orders are likely to be more im-
portant than in the two-flavor case. Most existing analyses
[3,16–18] are based on the explicit assumption that the ef-
fect of vacuum fluctuations of s̄s pairs on order parameters
is small: it is usually assumed that the two parameters of
the O(p2) Lagrangian F0 ≡ F (3) and Σ(3) ≡ F 2

0 B0 are
such that F0 ≈ Fπ and (mu +md)Σ(3) ≈ F 2

πM2
π , i.e., that

the corrections due to non-vanishing ms can be treated as
a small perturbation.

A closely related assumption concerns the smallness
of the two O(p4) low-energy constants (LECs) Lr

6(µ) and
Lr

4(µ) which describe the large-Nc suppressed and Zweig-
rule violating effects of fluctuations in the vacuum chan-
nel. Experimental information on the actual size of these
two constants has been rather scarce; for a long time it
was customary to posit Lr

6(Mρ) = (−0.2±0.3)×10−3 and
Lr

4(Mρ) = (−0.3±0.5)×10−3 as an input to both one-loop
[3,16] and two-loop calculations [17,18]. More recently, at-
tempts of indirect estimates of L4 and L6 have appeared,
all pointing towards small positive values compared to the
old Zweig-rule based estimates mentioned above. Rapidly
convergent sum rules for the correlator 〈(ūu)(s̄s)〉 [5–8]
yield the rough estimate Lr

6(Mρ) = (0.6 ± 0.3) × 10−3,
while from the analysis of π–K sum rules [19] it has been
concluded that Lr

4(Mρ) = (0.2±0.3)×10−3. The last con-
clusion has been confirmed in a recent two-loop fit to the
scalar form factors [20]. The point is that the effect of such
small shifts on order parameters is amplified by large coef-
ficients: with the above estimates, Σ(3) and F (3)2 can be
suppressed compared to Σ(2) and F (2)2 respectively by
as much as a factor of 2. In this way, vacuum fluctuations
of s̄s pairs could lead to a particular type of instability in
three-flavor χPT.

The main purpose of the present work is to investigate
instabilities in Nf = 3 χPT that would specifically arise
from the (partial) suppression of order parameters Σ(3)
and F 2

0 , and to propose a systematic non-perturbative
modification (resummation) of the standard χPT recipe
that could solve the problem. We assume that the whole
expansion of relevant observables in powers of ms is glob-
ally – though slowly and at most asymptotically – con-
vergent. The problem may occur with the enhancement of
particular terms of the type msL6 or msL4 that appear
with large coefficients and can be identified as arising from
fluctuation of vacuum s̄s pairs. These terms are respon-
sible for the important “induced contributions” to Σ(2)
and F (2)2, explaining why Σ(2) and F (2)2 at physical ms

could be substantially larger than their ms = 0 limit Σ(3)
and F (3)2 respectively. We show that in order to solve
this particular problem it is not necessary to modify the



S. Descotes-Genon et al.: Resumming QCD vacuum fluctuations in three-flavor Chiral Perturbation Theory 203

standard chiral counting rules as in generalized χPT [21].
The modification we propose is more modest: within the
standard expansion scheme in powers of quark masses and
external momenta, it appears to be sufficient to resum the
fluctuation terms driven by msL4 and msL6 in the usual
perturbative reexpression of the order parameters msΣ(3)
and F 2

0 in terms of observables such as Mπ, MK , . . . and
physical decay constants. This resummation is of impor-
tance for the purpose of extracting the value of Nf = 3
order parameters from experiment.

The possible effects of vacuum fluctuations in three-
flavor χPT and their resummation are discussed in Sects. 2
and 3. These two sections are focused on Goldstone bo-
son masses and decay constants, which are the observ-
ables directly entering the reexpression of order param-
eters mΣ(3) and F 2

0 . In our approach, the influence of
higher χPT orders (O(p6) and higher) is encoded into a
few parameters referred to as “NNLO remainders”, which
are kept through the whole analysis whatever their val-
ues. The latter depend on the model one takes for the
higher order counterterms and one hopes that they re-
main reasonably small independently of the model used.
The result of this part of our article is an exact expression
of L4, L5, L6 and L8 in terms of the three fundamental
parameters

X(3) =
(mu + md)Σ(3)

F 2
πM2

π

, Z(3) =
F 2

0

F 2
π

, r =
2ms

mu + md
,

(7)
and four NNLO remainders. Using these expressions in-
side the χPT formulae for various additional observables,
one can hope to pin down the values of X(3), Z(3) and r
for a given set of assumptions on higher orders (NNLO re-
mainders). The logical structure of the problem naturally
calls for a Bayesian statistical type approach [22].

As a first application we consider the three-flavor anal-
ysis of ππ scattering, since today rather accurate data ex-
ist in this case and we know from past studies [11,13] that
a strong correlation exists between the value of r and the
characteristics of the two-flavor chiral limit as revealed in
low-energy ππ scattering. In Sect. 4 a quantitative analysis
of this correlation is presented for the first time. On the
other hand, the Nf = 3 order parameters X(3) and Z(3)
cannot be extracted from the ππ data alone. In Sect. 5
we survey some possibilities of learning about these fun-
damental order parameters from π–K scattering, η → 3π
decays, OPE condensates and sum rules and, last but not
least, from lattice simulations with three fully dynamical
fermions: we present the corresponding extrapolation for-
mulae using our resummed χPT formulation.

2 Convergence and instabilities
of Nf = 3 chiral expansion

We first recall the general structure of three-flavor χPT
[3], emphasizing where and how the instabilities due to
vacuum fluctuations of s̄s pairs [11] could possibly show
up. Unless stated otherwise, a typical quantity subject to

the expansion in powers of running quark masses mu, md,
ms will be thought of as a connected QCD correlation
function of quark currents (V, A, S, P ) with external mo-
menta fixed somewhere in a low-energy region away from
the singularities generated by Goldstone bosons. We will
take as a working hypothesis that the usual low-energy ob-
servables, e.g., Goldstone boson masses, decay constants,
form factors and scattering amplitudes (at particular kine-
matical points), when linearly expressed through such
QCD correlation functions, exhibit optimal convergence
properties. While a similar assumption is implicitly made
in the standard off-shell formulation of χPT [1,3], we will
shortly argue that in the presence of important vacuum
fluctuations this assumption should be understood as a
restriction: observables that are not linearly expressible
in terms of QCD correlators, e.g., ratios of Goldstone bo-
son masses, need not admit a well convergent perturbative
treatment and they should be treated with a particular
care. This selects for instance F 2

πM2
π , F 2

π and F 2
πF 2

KAπK

(where AπK denotes the πK scattering amplitude), but
rules out M2

π .

2.1 The bare χPT series

The chiral expansion of symmetry-breaking observables in
terms of the three lightest quark masses mu, md, ms is ac-
tually not a genuine power series expansion, due to the
presence of chiral logarithms, which reflect infrared sin-
gularities characteristic of the chiral limit. One can nev-
ertheless give an unambiguous scale-independent meaning
to the renormalized coefficients of each power of individ-
ual quark masses. An observable A can be represented as
a formal series

A =
∑
j,k,l

mj
umk

dml
sAjkl, (8)

where the coefficients Ajkl[mu, md, ms; B0, F0; Lr
1(µ) . . .

Lr
10(µ); Cr

1(µ) . . . Cr
90(µ); . . .] are defined in terms of the

constants contained in the effective Lagrangian.
(i) The basic order parameters B0 and F0 which are re-
lated to the three-flavor chiral limit of the quark conden-
sate and of the pion decay constant respectively,

Σ(3) = − lim
mu,md,ms→0

〈ūu〉 ,

F0 ≡ F (3) = lim
mu,md,ms→0

Fπ , (9)

B0 =
Σ(3)
F (3)2

;

(ii) the 10 O(p4) LECs Lr
i (µ);

(iii) the 90 O(p6) LECs Cr
i (µ) [23], and eventually higher

order counterterms. All LECs are renormalized at the
scale µ. In addition, the Ajkl depend logarithmically on
the quark masses through the Goldstone boson masses in
the loops, and this dependence is such that for each jkl the
coefficient Ajkl is independent of the scale µ. The represen-
tation (8) has been explicitly worked out for some observ-
ables to one [3] and two loops [17,18,20] and there is no
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doubt that it extends to all orders of the chiral expansion.
We shall refer to the expansion expressed in the form (8)
as a bare expansion, to emphasize that it is entirely written
in terms of the parameters of the effective Lagrangian –
no reexpression of the latter in terms of observable quan-
tities has been performed. It is crucial that even before
one starts rewriting and reordering the series (8) in pow-
ers of Goldstone boson masses, the full renormalization of
the bare expansion (8) can be performed order by order in
the quark masses. Consequently, the coefficients Ajkl are
finite as well as cut-off and renormalization-scale indepen-
dent for all values of quark masses and of (renormalized)
LECs in the effective Lagrangian.

In view of possible applications, we are concerned with
practical questions related to the convergence properties
of the bare χPT expansion (8) in QCD. The latter will
depend on the values of running quark masses and on the
values of the LECs at the typical hadronic scale ΛH ∼ Mρ

set by the masses of non-Goldstone hadrons. In particular,
one should question the convergence of the bare chiral
expansion for the actual values of quark masses and not
just in the infinitesimal vicinity of the chiral limit. In the
real world, all three quarks, u, d, s, are sufficiently light,

mu(ΛH), md(ΛH) � ms(ΛH) � ΛH , (10)

to expect a priori some (at least asymptotic) convergence
of the three-flavor bare χPT series. As pointed out in [7,
11], instabilities of the latter can nevertheless occur due
to fluctuations of massive s̄s pairs in the vacuum. The im-
portance of such pairs is measured by the strength of the
effective QCD coupling; i.e., comparing ms with ΛQCD,
rather than with the hadronic scale ΛH . Furthermore,
the impact of these fluctuations is proportional to ms.
Hence, instabilities due to fluctuations of vacuum quark–
antiquark pairs turn out to be particularly relevant for
strange quarks and could manifest themselves when two-
and three-flavor chiral expansions are compared.

It has been argued [7,11] that fluctuations of s̄s pairs
lead to a partial suppression of the three-flavor condensate
Σ(3), reducing the relative importance of the first term in
the bare expansion of the Goldstone boson masses. We
can consider for instance the Ward identity related to the
mass of the pion (from now on we neglect isospin breaking
and take mu = md = m):

F 2
πM2

π = 2mΣ(3) + 2mmsZ
s

+4m2

[
A + Zs +

B2
0

32π2

(
3 log

M2
K

M2
π

+ log
M2

η

M2
K

)]

+F 2
πM2

πdπ . (11)

The parameters Zs and A are defined in terms of the LECs
L6(µ), L8(µ) and logarithms of Goldstone boson masses
(their expression is recalled in Appendix A). Vacuum fluc-
tuations of s̄s pairs show up in the term msZ

s. For the
physical value of ms ∼ ΛQCD, the corresponding O(p4)
term 2mmsZ

s can be as important [5,7,8] as the leading-
order condensate term 2mΣ(3). Even then, the remainder
dπ, which collects all O(p6) and higher contributions, can

still be small: dπ � 1. In other words, vacuum fluctua-
tions need not affect the overall convergence of the bare
chiral expansions such as (8) or (11) at least for some
well-defined selected class of observables.

2.2 The role of NNLO remainders

Let us write a generic bare expansion (8) in a concise form:

A = ALO + ANLO + A δA. (12)

Equation (12) is an identity: ALO collects leading pow-
ers in quark masses in the bare expansion (8) (e.g., the
condensate term in (11)), ANLO consists of all next-to-
leading contributions (the second and third terms in (11)),
whereas A δA stands for the sum of all remaining terms
starting with the next-to-next-to-leading order (NNLO).
In (11), the latter is denoted δ(F 2

πM2
π) ≡ dπ.

With this setting, A can be identified with the exact
(experimental) value of the observable A. Usually, ALO
corresponds to the O(p2) contribution, ANLO to O(p4) and
A δA collects all higher orders starting with O(p6)2. δA will
be referred to as “NNLO remainder”. A precise definition
of δA involves some convention in writing the argument in
the chiral logarithms contained in the one-loop expression
for ANLO. To illustrate this point, consider the typical
next-to-leading expression:

ANLO =
∑
qq′

mqmq′


aqq′(µ) +

∑
PQ

aPQ
qq′ kPQ(µ)


 , (13)

or

ANLO =
∑

q

mq


aq(µ) +

∑
PQ

aPQ
q kPQ(µ)


 , (14)

corresponding respectively to a leading-order term ALO =
O(mquark) and ALO = O(1). Here q, q′ = (u, d, s) and
P, Q label Goldstone bosons. We have introduced the loop
factor in the general case of unequal masses [3]:

kPQ(µ) =
1

32π2

M2
P log(M2

P /µ2) − M2
Q log(M2

Q/µ2)
M2

P − M2
Q

,

(15)
which in the limit of equal masses becomes

kPP (µ) =
1

32π2

[
log

M2
P

µ2 + 1
]

. (16)

In (13) and (14), the constants aqq′(µ) [aq(µ)] are ex-
pressed in terms of O(p4) LECs Lr

i (µ) multiplied by the
appropriate powers of B0 and F0. These constants are de-
fined in the chiral limit and are consequently independent
of the quark masses, similarly to the known numerical co-
efficients aPQ

qq′ [aPQ
q ].

2 The case of a quantity whose expansion only starts at O(p4)
or higher requires particular care.
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The only requirement from χPT is that ANLO re-
produces the O(p4) behavior in the limit of small quark
masses mquark → 0; i.e., when the Goldstone boson masses
M2

P in the loop factors (15) and (16) are replaced by their
respective leading-order contributions. Once this mathe-
matical condition is satisfied, different ways of writing the
arguments of the chiral logarithms for physical values of
quark masses merely correspond to different conventions
in defining the NNLO remainders δA. For observables of
the form of (13) and (14) at O(p4), we will use the con-
vention which consists in writing in (15) the physical val-
ues of the Goldstone boson masses M2

P ; alternatively, we
could have used the sum of LO and NLO contributions
to M2

P . This concerns, in particular, the expansion of the
Goldstone boson masses and decay constants. In the latter
case one has P = Q and the convention simply amounts
to writing the O(p4) tadpoles, in the notation of [3], as
follows:

µP =
1

32π2

M2
P

∣∣
LO

F 2
0

log
M2

P

∣∣
phys.

µ2 . (17)

The same rule can be applied to the unitarity corrections
arising in the bare expansion of subtraction constants that
define form factors and low-energy ππ [24] and πK [19,25,
26] amplitudes. Such a prescription (details are given in
Sect. 4.1) will suffice for the quantities considered in this
article.

Not much is known about the size of the NNLO re-
mainders despite the fact that complete SU(3) × SU(3)
two-loop calculations do exist for some observables [17,18,
20] and the general structure of the generating functional
is known to this order [23]. Following this line, the bare ex-
pansion can be pushed further and the NNLO remainder
δA can be represented as

A δA = ∆A
2L(µ) + ∆A

1L(µ) + ∆A
tree(µ) + . . . , (18)

where the ellipsis stands for O(p8) and higher contribu-
tions. The splitting of the O(p6) part [23] into the genuine
two-loop contribution ∆2L (containing only O(p2) ver-
tices), the one-loop contribution ∆1L (with the insertion
of a single O(p4) vertex) and the tree O(p6) contribution
∆tree depends on the renormalization scale and scheme.

Several ingredients are actually needed to estimate δA
from the representation (18). The first two terms (loop
contributions) depend respectively on O(p2) parameters
mB0, msB0, F0 and on O(p4) LECs Lr

i (µ). Furthermore,
the tree-level counterterms ∆A

tree(µ) are built up from the
90 LECs Cr

i (µ) that define the O(p6) effective Lagrangian.
Even if some of them can presumably be determined from
the momentum dependence of form factors, decay distri-
butions and scattering amplitudes (e.g., quadratic slopes),
the remaining unknown O(p6) constants, which merely de-
scribe the higher order dependence on quark masses, are
probably much more numerous than the observables that
one can hope to measure experimentally. At this stage
some models (resonance saturation, large Nc, NJL, . . . )
and/or lattice determinations are required [27], but the
large number of terms contributing to a given ∆A

tree makes

the resulting uncertainty in δA delicate to estimate. Fi-
nally, it is worth stressing that only the sum of the three
components shown in (18) is meaningful. An estimate of
the size of the NNLO remainders is therefore not possi-
ble without a precise knowledge of the O(p2) and O(p4)
constants mB0, F0 and the Li’s.

In this paper, we do not address the problem of de-
termining the NNLO remainders on the basis of (18). We
are going to show that interesting non-perturbative con-
clusions can be reached, even if we do not decompose the
NNLO remainders and investigate the behavior of the the-
ory as a function of their size. We are primarily interested
in the constraints imposed by experimental data on the
fundamental QCD SU(3) × SU(3) chiral order parame-
ters (and quark mass ratio)

X(3) =
2mΣ(3)
M2

πF 2
π

, Z(3) =
F 2(3)
F 2

π

, r =
ms

m
, (19)

Y (3) =
2mB0

M2
π

=
X(3)
Z(3)

, (20)

under various theoretical assumptions on the NNLO re-
mainders (i.e., on higher χPT orders). A suitable approach
to this problem is provided by Bayesian statistical infer-
ence [22]. (See Appendix B for a brief review adapted to
the case of χPT.) The output of this analysis is presented
as marginal probability distribution functions for the fun-
damental parameters (19) and it depends not only on the
experimental input but also on the state of our knowledge
of higher χPT orders. In this approach the latter depen-
dence is clearly stated and can be put under control: the
analysis can be gradually refined if new information on
the relevant NNLO remainders becomes available either
through (18) or in another way.

We start with a very simple theoretical assumption on
higher orders: the bare chiral expansion of “good observ-
ables” as defined at the beginning of this section is globally
convergent. By these words, we mean that the NNLO re-
mainder δA in the identity (12) is small compared to 1:

δA � 1 , (21)

for the physical values of the quark masses and for the
actual size of the O(p2) and O(p4) parameters. On gen-
eral grounds, one expects δA = O(m2

quark). In the worst
case, its size should be δA = O(m2

s) ∼ (30%)2 = 0.1, but
in many situations δA turns out to be O(msm) or even
O(m2) and is therefore more suppressed3. These cases are
usually identified as a consequence of SU(2)×SU(2) low-
energy theorems. (Such suppressions are not claimed from
arguments based on the Zweig rule, since we never assume
the latter.) However the NNLO remainders will not be
neglected or used as small expansion parameters in the
following.

On the other hand, no particular hierarchy will be
assumed between the leading O(p2) and next-to-leading

3 We take as order of magnitudes 10% for O(m) contribu-
tions and 30% for O(ms) terms. This can be related to the
typical sizes of violation for SU(2)×SU(2) and SU(3)×SU(3)
flavor symmetries.
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O(p4) components of (12). By definition, for infinitesi-
mally small quark masses mu, md, ms, one should have

ANLO � ALO , XA ≡ ALO

A
∼ 1 . (22)

However, due to vacuum fluctuations of q̄q pairs, the con-
dition (22) can be easily invalidated for the physical value
of ms ∼ ΛQCD: as discussed in [11], the three-flavor con-
densate Σ(3) in (11) may be of a comparable size to –
or even smaller than – the term msZ

s, reflecting the vac-
uum effects of massive s̄s pairs. At the same time, vacuum
fluctuations need not affect the overall convergence of the
bare chiral expansion (11), i.e., the condition (21) can still
hold for “good observables” such as F 2

πM2
π . We will call

conditionally convergent an observable for which δA � 1
but the hierarchy condition (22) does not hold.

2.3 Instabilities in chiral series

Standard χPT consists of two different steps.
(1) The first step coincides with what has been described
above as the “bare expansion” in powers of quark masses
and external momenta. The coefficients of this expansion
are unambiguously defined in terms of parameters of the
effective Lagrangian B0, F0, Li, . . ., independently of the
convergence properties of the bare expansion.
(2) The second step consists in rewriting the bare expan-
sion as an expansion in powers of Goldstone boson masses,
by eliminating order by order the quark masses m and ms

and the three-flavor order parameters Σ(3), F (3) in favor
of the physical values of Goldstone boson masses M2

P and
decay constants F 2

P . For this aim one inverts the expansion
of the Goldstone boson masses:

2mB0 = M2
π

(
1 +

∑
P

cB
P M2

P + . . .

)
, (23)

where cB
P contains the low-energy constants Li and the chi-

ral logarithms. A similar “inverted expansion” is worked
out for F 2

0 :

F 2
0 = F 2

π

(
1 +

∑
P

cF
P M2

P + . . .

)
, (24)

and for the quark mass ratio

ms + m

2m
=

M2
K

M2
π

(
1 +

∑
P

cr
P M2

P + . . .

)
. (25)

As a result of these two steps, observables other than
M2

π , M2
K , F 2

π (already used in (23), (24) and (25)) are ex-
pressed as expansions in powers of M2

P and log M2
P with

their coefficients depending on the constants Li, Ci, etc.
We now argue that large vacuum fluctuations of s̄s

pairs could represent a serious impediment to the sec-
ond step, i.e., to the perturbative reexpression of order
parameters. This may happen if the bare expansion (12)

of Goldstone boson masses and decay constants is only
conditionally convergent: the leading and next-to-leading
contributions are then of comparable size, ALO ∼ ANLO,
despite a good global convergence δA � 1. Let us concen-
trate on the three-flavor GOR ratio X(3), defined in (19),
which measures the condensate Σ(3) in the physical units
F 2

πM2
π . In the definition of X(3) we can replace F 2

πM2
π

by its bare expansion (11) and investigate the behavior of
X(3) in limits of small quark masses. First of all, in the
SU(2) × SU(2) chiral limit one obtains

lim
m→0

X(3) =
Σ(3)
Σ(2)

(ms fixed), (26)

from the definition of the two-flavor condensate Σ(2) ≡
limm→0 F 2

πM2
π/(2m). On the other hand, if both m and

ms tend to zero, we obtain by definition

lim
m,ms→0

X(3) = 1 . (27)

Consequently, as long as the three-flavor condensate Σ(3)
is suppressed with respect to the two-flavor condensate
Σ(2) (Σ(3) ∼ Σ(2)/2 is suggested by the sum rule analysis
in [5,6,8]), the physical value of X(3) cannot be simulta-
neously close to its limiting values in both SU(2)×SU(2),
(26), and SU(3) × SU(3), (27).

We expect the limit “m → 0, ms physical” to be a good
approximation of the physical situation of very light u and
d quarks, and thus the limiting value expressed by (26) to
be quite close to the physical X(3). On the other hand, the
variation of X(3) between ms = 0 and ms physical may
be substantial, due to important fluctuations of the low-
est modes of the (Euclidean) Dirac operator [10], which
correspond to a significant Zweig-rule violating correla-
tion between massless non-strange and massive strange
vacuum pairs [11]. The latter contribute to the two-flavor
condensate by the amount msZ

s. (We see from (11) that
Σ(2) = Σ(3)+msZ

s + . . .) As long as Σ(3) is comparable
to (or smaller than) the “induced condensate” msZ

s, the
hierarchy condition between LO and NLO (22) will be vio-
lated for the bare expansion (11), in spite of a good global
convergence dπ � 1. The inverted expansion of X(3), in
which F 2

πM2
π is replaced by its expansion (11),

X(3) =
1

1 +
msZ

s

Σ(3)
+ . . .

= 1 +
∑
P

cX
P M2

P + . . . , (28)

would then be invalidated by large coefficients, even for
quite modest (and realistic) values of ms at 1 GeV around
150 MeV [2]. In such a case, it is not a good idea to replace
in higher orders of the bare expansion X(3) by 1, 2mB0
by M2

π , F 2
0 by F 2

π , etc.
A comment is in order before we describe in detail the

non-perturbative alternative to eliminating order by order
the condensate parameters and quark masses in bare χPT
expansions. The previous example of X(3) can be stated
as a failure of the bare expansion of 1/F 2

πM2
π . Let us re-

mark that this is perfectly compatible with our assump-
tion that the bare expansion of the QCD two-point func-
tion of axial-current divergences (i.e., F 2

πM2
π) converges



S. Descotes-Genon et al.: Resumming QCD vacuum fluctuations in three-flavor Chiral Perturbation Theory 207

globally. Indeed, consider a generic observable A with its
bare expansion (22). The latter unambiguously defines the
coefficients of the bare expansion of 1/A:

B = BLO + BNLO + B δB , B ≡ 1
A

, (29)

in terms of those of A:

BLO =
1

ALO
, BNLO = −ANLO

A2
LO

, (30)

δB =
(1 − XA)2

X2
A

− δA

X2
A

, XA ≡ ALO

A
. (31)

One observes that the global convergence of A does not
necessarily imply the convergence of B = 1/A . If the
expansion of A is only conditionally convergent, i.e., if the
relative leading-order contribution XA is not close to 1,
then δ(1/A) need not be small – even in the extreme case
δA = 0. This explains the origin of instabilities and large
coefficients in the inverted expansion such as (23), (24) or
(28). At the same time, it motivates the restriction to a
linear space of “good observables” for which δA � 1. The
latter is assumed to be represented by connected QCD
correlators, and a priori excludes non-linear functions of
them, such as ratios.

3 Constraints from Goldstone boson masses
and decay constants

The conditional convergence of F 2
P M2

P and/or of F 2
P does

not by itself bar experimental determination of the three-
flavor order parameters X(3) and Z(3). It just may pre-
vent the use of perturbation theory in relating them to
observable quantities. In this section a systematic non-
perturbative alternative is considered in detail.

The starting point is the standard bare expansion of
F 2

P M2
P and F 2

P for P = π, K, η. (See (11) for the pion
case.) As discussed above, these particular combinations of
masses and decay constants are expected to converge well,
since they are linearly related to two-point functions of ax-
ial/vector currents and of their divergences taken at van-
ishing momentum transfer. As long as Z(3) = F 2

0 /F 2
π ∼ 1,

the convergence of M2
P would be as good as for F 2

P M2
P .

If however F 2
P is only conditionally convergent (i.e., Z(3)

significantly smaller than 1), the expansion of M2
P could

become unstable, in contrast to that of F 2
P M2

P ; the per-
turbative expansion of 1/F 2

P would then exhibit very poor
convergence. We have no prejudice in this respect: the size
of Z(3) as well as that of X(3) remains an open problem
until they are inferred from the data.

The expansion of F 2
P M2

P and F 2
P can be written in the

generic form (12), denoting the corresponding NNLO re-
mainders by dP and eP respectively. The LO of F 2

P M2
P

is given by the condensate Σ(3) and the NLO contri-
bution is fully determined by the standard O(p4) LECs
L6(µ), L8(µ) (and L7 in the case of the η meson). Simi-
larly, at LO F 2

P coincides with the order parameter F 2
0 =

F 2(3) and the NLO contribution is given in terms of L5(µ)

and L4(µ). All necessary formulae can be found in [13].
Here, we follow the notation of the above reference and
for the reader’s convenience the bare expansions of F 2

P M2
P

and F 2
P are reproduced in Appendix A.

3.1 Pions and kaons

For P = π, K the mass and decay constant identities
(Ward identities) consist of four equations that involve
X(3), Z(3), r = ms/m, L6, L8, L4, L5 and the four NNLO
remainders dπ, dK , eπ, eK . These identities – given in Ap-
pendix A – are exact as long as the remainders dP , eP are
maintained in the formulae and no expansion is performed.

As explained in [11,13], we can combine the mass and
decay constant identities (recalled in Appendix A) to ob-
tain two relations between the order parameters X, Y, Z
and the fluctuation parameters ρ and λ:

X(3) = 1 − ε(r) − [Y (3)]2ρ/4 − d,

Z(3) = 1 − η(r) − Y (3)λ/4 − e, (32)

where the functions of the quark mass ratio are4

ε(r) = 2
r2 − r

r2 − 1
, r2 = 2

(
FKMK

FπMπ

)2

− 1 ∼ 36 ,

η(r) =
2

r − 1

(
F 2

K

F 2
π

− 1
)

, (33)

and the following linear combinations of NNLO remain-
ders arise:

d =
r + 1
r − 1

dπ −
(

ε(r) +
2

r − 1

)
dK , (34)

e =
r + 1
r − 1

eπ −
(

η(r) +
2

r − 1

)
eK . (35)

The LECs L6 and L4 enter the discussion through the
combinations

λ = 32
M2

π

F 2
π

(r + 2)∆L4 , ρ = 64
M2

π

F 2
π

(r + 2)∆L6 , (36)

where the scale-independent differences ∆Li = Lr
i (µ) −

Lcrit
i (µ) involve the critical values of the LECs defined by

Lcrit
4 (µ) =

1
256π2 log

M2
K

µ2 (37)

− 1
128π2

r

r2 + r − 2

{
log

M2
K

M2
π

+
(

1 +
1
2r

)
log

M2
η

M2
π

}
,

Lcrit
6 (µ) =

1
512π2

(
log

M2
K

µ2 +
2
9

log
M2

η

µ2

)

− 1
512π2

r

r2 + r − 2

(
3 log

M2
K

M2
π

+ log
M2

η

M2
K

)
. (38)

4 In this paper, we take the following values for the Goldstone
boson masses and decay constants: Mπ = 139.6 MeV, MK =
493.7 MeV, Mη = 547 MeV, Fπ = 92.4 MeV and FK/Fπ =
1.22.
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The critical values of L4 and L6 are only mildly dependent
on r; for r = 25,

Lcrit
6 (Mρ) = −0.26 · 10−3,

[r = 25]
Lcrit

4 (Mρ) = −0.51 · 10−3 .

(39)

The remaining two equations of the π–K system can
be reexpressed as a relation between ε(r) and L8 on one
hand and between η(r) and L5 on the other hand:

ε(r) = 16
M2

π

F 2
π

[Y (3)]2∆L8 − d′ , (40)

η(r) = 8
M2

π

F 2
π

Y (3)∆L5 − e′ . (41)

These relations involve the combinations of the NNLO
remainders d′ = d − dπ and e′ = e − eπ. At large values of
r (≥ 15), ε(r) and η(r) are suppressed and d′ � d ∼ dπ,
e′ � e ∼ eπ.

The LECs arise in (40) and (41) through the differences

∆L8 = Lr
8(µ) − 1

512π2

[
log

M2
K

µ2 +
2
3

log
M2

η

µ2

]

− 1
512π2(r − 1)

(
3 log

M2
K

M2
π

+ log
M2

η

M2
K

)
, (42)

∆L5 = Lr
5(µ) − 1

256π2

[
log

M2
K

µ2 + 2 log
M2

η

µ2

]
(43)

− 1
256π2(r − 1)

(
3 log

M2
η

M2
K

+ 5 log
M2

K

M2
π

)
.

These differences combine the (renormalized and quark
mass independent) constants L8, L5 and chiral logarithms
so that they are independent of the renormalization scale
µ. For r = 25, we obtain

∆L5 = Lr
5(Mρ) + 0.67 · 10−3 ,

[r = 25]
∆L8 = Lr

8(Mρ) + 0.20 · 10−3 .

(44)

3.2 Perturbative reexpression of order parameters

The four exact equations (32), and (40) and (41) can be
used to illustrate explicitly the instabilities which may
arise in the perturbative expression of X(3) and Z(3) in
powers of M2

P . In the perturbative treatment of three-
flavor χPT [3], one uses the fact that Y (3) = 1 + O(M2

P )
to set systematically Y (3) = 1 whenever it appears in
the NLO term. One first uses (40) and (41) to eliminate
F 2

K/F 2
π and r = ms/m in terms of ∆L5 and ∆L8. The

result reads
F 2

K

F 2
π

= 1 + 8
M2

K − M2
π

F 2
π

∆L5 + . . . , (45)

r + 1 = 2
M2

K

M2
π

(
1 + 8

M2
K − M2

π

F 2
π

[∆L5 − 2∆L8] + . . .

)
.

(46)

In these formulae the quark mass ratio r appearing in the
expressions for ∆Li has to be replaced by its leading-order
value (obtained from (46)):

r0 = 2
M2

K

M2
π

− 1 ∼ 24 . (47)

Strictly speaking, (45) and (46) do not get any direct con-
tribution from the vacuum fluctuation of s̄s pairs which
violate the Zweig rule and are tracked by L6 and L4. The
situation is quite different in the case of the identities (32)
for X(3) and Z(3), where the terms describing fluctuations
are potentially dangerous. Expressing them perturbatively
one gets

X(3) = 1 − 16
M2

π

F 2
π

∆L8 − 16
2M2

K + M2
π

F 2
π

∆L6 + . . . ,

(48)

Z(3) = 1 − 8
M2

π

F 2
π

∆L5 − 8
2M2

K + M2
π

F 2
π

∆L4 + . . . (49)

The large coefficients characteristic of the perturbative
treatment of 1/(F 2

πM2
π) – and to some extent also of 1/F 2

π

– now become visible. Equations (48) and (49) lead nu-
merically to

X(3) = 1 − 37∆L8 − 950∆L6 + . . . , (50)
Z(3) = 1 − 18∆L5 − 475∆L4 + . . . (51)

In (48) and (49), the main NLO contribution comes
from the M2

K-enhanced term proportional to the O(p4)
Zweig-rule violating LECs L6 and L4. If the latter stay
close to their critical values (corresponding to (39) for
r = 25), the NLO contributions remain small. On the
other hand, even though the values of L4 and L6 are un-
known yet, dispersive relations have been used to con-
strain their values: Lr

6(Mρ) = (0.6 ± 0.2) · 10−3 based
on sum rules for the correlator 〈(ūu + d̄d)s̄s〉 [5,6,8], and
Lr

4(Mρ) = (0.2 ± 0.3) · 10−3 from πK scattering data [19].
Such estimates – rather different from the critical values
– suggest a significant violation of the Zweig rule in the
scalar sector, and an important role for the vacuum fluc-
tuations of ss̄ pairs in the patterns of chiral symmetry
breaking.

As an exercise, for illustrative purposes, we will now
use the central values of the above sum rule estimates to
study the convergence of (48) and (49). We actually aim
in this paper at providing a framework to determine more
accurately the size of vacuum fluctuations directly from
experimental observables. If we take Lr

5(Mρ) = 1.4 · 10−3

and Lr
8(Mρ) = 0.9 · 10−3 [3,16], the numerical evaluation

of (48) and (49) leads to the decomposition

Qty = LO + [fluct + other] + NNLO ,

X(3) ≡ 2mΣ(3)
F 2

πM2
π

= 1 − [0.82 + 0.04] + O(p4) ,

Z(3) ≡ F (3)2

F 2
π

= 1 − [0.34 + 0.04] + O(p4) ,

(r + 1)
M2

π

2M2
K

= 1 − [0.00 + 0.06] + O(p4) . (52)
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For each quantity, the right-hand side is the sum of the
leading term (1), the NLO term (the sum in brackets) and
higher order terms. The NLO term is decomposed into its
two contributions: the first one comes from the fluctuation
term (proportional to ∆L4 or ∆L6) and the second one
collects all other NLO contributions. Fluctuation param-
eters have a dramatic effect on the convergence – they are
the only terms enhanced by a factor of M2

K in (48) and
(49).

It should be stressed that the instability of the per-
turbative expansion of X(3) and Z(3) does not originate
from higher order terms in the expansion (11) of F 2

πM2
π .

The latter actually factorize and can be cleanly separated
from the effect of vacuum fluctuations. This can most eas-
ily be established in the SU(2) × SU(2) limit (26). Using
a bar to indicate that a quantity is evaluated for m = 0
and fixed ms 
= 0, one has

Σ(2) = lim
m→0

F 2
πM2

π

2m
= Σ(3) + 32B2

0ms∆L6 + Σ(2)d̄π ,

(53)
where

∆L6 = Lr
6(µ) − 1

512π2

(
log

M̄2
K

µ2 +
2
9

log
M̄2

η

µ2

)
. (54)

Consequently,

X̄(3) =
Σ(3)
Σ(2)

=
1

1 + 32
msB0

F 2
0

∆L6

(1 − d̄π) . (55)

We expect the effect of non-zero m to be tiny; in particu-
lar, ∆L6 � ∆L6, dπ � d̄π = d̄ = O(m2

s) and X̄(3) � X(3).
Similarly, using the expansion of decay constants displayed
in Appendix A, one gets

Z̄(3) =
F (3)2

F (2)2
=

1

1 + 16
msB0

F 2
0

∆L4

(1 − ēπ) , (56)

where ēπ = ē = O(m2
s) and

∆L4 = Lr
4(µ) − 1

256π2 log
M̄2

K

µ2 . (57)

Equations (55) and (56) are exact identities, in which the
whole effect of higher orders is gathered into the O(m2

s)
NNLO remainders d̄π and ēπ. Even if the latter are small
(∼ 10%), the expansion of X̄(3) and Z̄(3) in powers of
ms may break down, provided the magnitudes of ∆L6
and ∆L4 are as mentioned above. The SU(2) × SU(2)
limit of (48) and (49) just exhibits the first term of such
an expansion. Let us stress that we chose the SU(2) ×
SU(2) limit for simplicity here, but that the factorization
of higher order corrections is a general result (holding even
for m 
= 0) [13].

One more remark is in order concerning the special
case in which both ∆L4 and ∆L6 are large, but satisfy

∆L4 = 2∆L6 . (58)

With this particular relation between the low-energy con-
stants, one has

Ȳ (3) =
X̄(3)
Z̄(3)

= lim
m→0

2mB0

M2
π

=
1 − d̄π

1 − ēπ
≈ 1 . (59)

This would describe a situation in which the (large) vac-
uum fluctuations suppress both the condensate Σ(3) and
the decay constant F 2

0 , i.e., partially restore the chiral
symmetry, and yet the ratio Σ(3)/F 2

0 = B0 remains non-
zero.

3.3 Non-perturbative elimination of O(p4) LECs

We have just seen that the perturbative treatment of the
chiral series fails if vacuum fluctuations of q̄q pairs are
large, resulting in instabilities in the chiral expansions. In
this case, the non-linearities in (32), relating order and
fluctuation parameters, are crucial, and we must not lin-
earize these relations (hence the inadequacy of a pertur-
bative treatment).

We should therefore treat (32) without performing any
approximation. Following [13], we can exploit (32) to ex-
press the chiral order parameters X(3) and Z(3) as func-
tions of the fluctuation parameters ρ and λ. The ratio of
the order parameters Y (3) is5

Y (3) = (60)
2[1 − ε − d]

1 − η − e +
√

[1 − η − e]2 + [ρ − λ][1 − ε − d]
,

where ε = ε(r) and η = η(r). The non-linear character of
(32) results in the (non-perturbative) square root. We see
that the behavior of Y (3) is controlled by the fluctuation
parameter ρ − λ, i.e., 2L6 − L4, as can be seen from (36).

The perturbative treatment sketched in the previous
section corresponds to linearizing (60), assuming that the
fluctuation parameter ρ − λ � 1. This is invalid if large
fluctuations occur: ρ and/or λ are then numerically of or-
der 1, although they count as O(p2) in the chiral limit.
Equation (60) leads to the suppression of Y (3), which
would contribute to a stabilization of (32) by reducing the
contribution proportional to the fluctuation parameters ρ
and λ. As discussed extensively in [13], different behaviors
of the fluctuation parameters can result in a rather varied
range of patterns of chiral symmetry breaking.

We would like to extract information about Nf = 3
chiral symmetry breaking from physical observables, even
in the event that the perturbative expansion breaks down.
We could proceed in the same way as in [13] and express
as many quantities as possible in terms of L4 and L6, in
order to stress the role played by vacuum fluctuations. In
the present paper, we find it more convenient to take as in-
dependent quantities the (more fundamental) chiral order
parameters X(3) and Z(3). We should emphasize that this

5 The quadratic equation for Y (3) admits two solutions, but
only one of them corresponds to the physical case (see [13] for
more details).
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corresponds to a different choice from that adopted in the
perturbative treatment of chiral series: in standard χPT,
X(3), Z(3), r, FK/Fπ are iteratively expressed in terms
of L4, L5, L6, L8. In contrast, we start by the same four
identities and express non-perturbatively L4, L5, L6, L8 in
terms of X(3), Z(3), r, FK/Fπ; this is a sensible treatment
provided that both LO and NLO terms are considered.

Keeping in mind that LO and NLO contributions can
have a similar size, we treat as exact identities the ex-
pansions of good observables in powers of quark masses
and exploit the mass and decay constant identities to re-
express O(p2) and O(p4) LECs in terms of r, X(3), Z(3),
observable quantities and NNLO remainders. This leads
to

F 2
0 = F 2

πZ(3) , (61)
2mB0 = M2

πY (3) , (62)
2msB0 = rM2

πY (3) , (63)

and to

[Y (3)]2Lr
6(µ) =

1
16(r + 2)

F 2
π

M2
π

[1 − X(3) − ε(r) − d]

+
[Y (3)]2

512π2

(
log

M2
K

µ2 +
2
9

log
M2

η

µ2

)
(64)

− [Y (3)]2r
(r − 1)(r + 2)

1
512π2

(
3 log

M2
K

M2
π

+ log
M2

η

M2
K

)
,

[Y (3)]2Lr
8(µ) =

F 2
π

16M2
π

[ε(r) + d′]

+
[Y (3)]2

512π2

(
log

M2
K

µ2 +
2
3

log
M2

η

µ2

)

+
[Y (3)]2

512π2(r − 1)

(
3 log

M2
K

M2
π

+ log
M2

η

M2
K

)
, (65)

Y (3)Lr
4(µ) =

1
8(r + 2)

F 2
π

M2
π

[1 − Z(3) − η(r) − e]

+
Y (3)
256π2 log

M2
K

µ2 (66)

− Y (3)
128π2(r + 2)

(
2r + 1
2r − 2

log
M2

η

M2
K

+ 2
4r + 1
4r − 4

log
M2

K

M2
π

)
,

Y (3)Lr
5(µ) =

F 2
π

8M2
π

[η(r) + e′]

+
Y (3)
256π2

(
log

M2
K

µ2 + 2 log
M2

η

µ2

)

+
Y (3)

256π2(r − 1)

(
3 log

M2
η

M2
K

+ 5 log
M2

K

M2
π

)
. (67)

These equations are derived from (32), (43) and (42), and
they have a much simpler expression in terms of ∆Li,
introduced in (37) and (38), and (42) and (43), rather

than Li (i = 4, 5, 6, 8):

Y 2(3)∆L6 =
1

16(r + 2)
F 2

π

M2
π

[1 − ε(r) − X(3) − d],

(68)

Y 2(3)∆L8 =
1
16

F 2
π

M2
π

[ε(r) + d′], (69)

Y (3)∆L4 =
1

8(r + 2)
F 2

π

M2
π

[1 − η(r) − Z(3) − e],

(70)

Y (3)∆L5 =
1
8

F 2
π

M2
π

[η(r) + e′]. (71)

The above identities are useful as long as the NNLO re-
mainders are small. The presence of powers of Y (3), i.e.,
B0, follows from the normalization of the scalar and pseu-
doscalar sources in [3]: these powers arise only for O(p4)
LECs related to chiral symmetry breaking (two powers for
L6, L7, L8, one for L4 and L5) and are absent for LECs
associated with purely derivative terms.

Plugging these identities into the χPT expansions cor-
responds therefore to a resummation of vacuum fluctua-
tions, as opposed to the usual (iterative and perturbative)
treatment of the same chiral series. We can then reex-
press the observables in terms of the three parameters of
interest, X(3), Z(3), r, and the NNLO remainders. Be-
fore describing how to exploit experimental information
to constrain these parameters, we should first comment
on the case of the η meson.

3.4 The η-mass and the Gell-Mann–Okubo formula

It remains for us to discuss the mass and decay constant
of η as constrained by Ward identities for two-point func-
tions of the eighth component of the axial current and
of its divergence. This results into two additional rela-
tions (given in Appendix A) that involve one new NLO
constant L7 and two extra NNLO remainders dη and eη.
These two identities will be used to reexpress the LEC
L7 in terms of the order parameters and quark mass ra-
tio, and to eliminate the decay constant Fη, which is not
directly accessible experimentally. This new discussion is
closely related to the old question [28] whether the remark-
able accuracy of the Gell-Mann–Okubo (GO) formula for
Goldstone bosons finds a natural explanation within χPT
and what it says about the size of the three-flavor conden-
sate.

The combination

DGO = 3F 2
η M2

η − 4F 2
KM2

K + F 2
πM2

π (72)

does not receive any O(p2) contribution from the gen-
uine condensate Σ(3). The η-mass identity (152) leads to
the following simple formula for DGO, expressed in units
F 2

πM2
π :

∆GO ≡ DGO

F 2
πM2

π

= 16
M2

π

F 2
π

(r−1)2[Y (3)]2(2L7+∆L8)+dGO ,

(73)
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where ∆L8 was defined in (42). Similarly, the identity for
Fη (153) can be put into the form

F 2
η

F 2
π

= 1 +
4
3

(
F 2

K

F 2
π

− 1
)

(74)

+
1

48π2

M2
π

F 2
π

Y (3)

[
(2r + 1) log

M2
η

M2
K

− log
M2

K

M2
π

]
+ eGO .

Equations (73) and (74) are exact as long as the NNLO
remainders

dGO = 3
F 2

η M2
η

F 2
πM2

π

dη − 4
F 2

KM2
K

F 2
πM2

π

dK + dπ ,

eGO =
F 2

η

F 2
π

eη +
4
3

F 2
K

F 2
π

eK − eπ

3
(75)

are included. If one follows Sect. 3.2 and treats the exact
formulae (73) and (74) perturbatively, one reproduces the
O(p4) expressions given in [3], as expected.

Remarkably, the identities (73) and (74) are simpler
and more transparent than their perturbative version, and
we find them useful to make a few numerical estimates
which may be relevant for a discussion of the GO formula.
For this purpose we shall use the value r = r0 ∼ 24 of the
quark mass ratio and neglect for a moment the NNLO
remainders dGO and eGO, as well as the error bars related
to the experimental inputs on masses and decay constants.
For this exercise, we also disregard isospin breaking and
electromagnetic corrections. First, the dependence of Fη

on Y (3) = 2mB0/M
2
π is negligibly small:

F 2
η

F 2
π

= 1.651 + 0.036 · Y (3) . (76)

In the estimate of ∆GO = DGO/F 2
πM2

π , we use F 2
η /F 2

π =
1.687 and find

∆GO = 77.70 − 74.46 + 1 = 4.24 . (77)

We have split the result into the three contributions cor-
responding respectively to η, K and π, in order to em-
phasize the accuracy of the formula. If we drop the decay
constants in ∆GO, we obtain

∆̄GO =
3M2

η − 4M2
K + M2

π

M2
π

= 46.06 − 50.03 + 1 = −2.97 .

(78)
Hence, apart from a change of sign, this more familiar
definition of the GO discrepancy is of a comparable mag-
nitude as ∆GO. For the reasons already stressed, the inter-
pretation in terms of QCD correlation functions is more
straightforward when F 2

P M2
P is used.

If the origin of the GO formula were to be naturally
explained by the dominance of the O(p2) condensate term
in the expansion of F 2

P M2
P , the order of magnitude of the

estimate (77) should be reproduced by (73) for a typical
order of magnitude of the O(p4) LECs L8 and L7 without

any fine tuning of their values. Using (40) and neglecting
the NNLO remainder d′, one gets

16
M2

π

F 2
π

(r − 1)2[Y (3)]2∆L8 = 22.5 [r = r0] . (79)

Hence, the typical O(p4) contribution ∆L8 to ∆GO hap-
pens to be nearly one order of magnitude bigger than the
estimate (77). The latter can only be reproduced by tun-
ing very finely the LEC L7:

[Y (3)]2(∆L8 + 2L7) � 1.3 × 10−4 , (80)

to be compared with the above estimate [Y (3)]2∆L8 �
1.2 × 10−3. All this of course does not reveal any con-
tradiction, but it invalidates the customary “explanation”
of the GO formula and the standard argument against a
possible suppression of the three-flavor condensate Σ(3).
Therefore, the fact that the GO formula is satisfied so well
remains unexplained independently of the size of Σ(3) and
of the vacuum fluctuations. The last point can be explic-
itly verified: the genuine condensate contribution Σ(3) as
well as the induced condensate msZ

s, which represents
an O(p4) contribution to F 2

P M2
P , both drop out of the

GO combination (72).
We now return to our framework: we do not assume

a particular hierarchy between LO and NLO contribu-
tions to chiral series, and we do not neglect any longer
the NNLO remainders (in the case of the η meson, dGO
and eGO might be sizeable and should be kept all the way
through). It is possible to use the previous formulae to
reexpress L7 in a similar way to (64)–(67):

[Y (3)]2L7 =
1

32(r − 1)2
F 2

π

M2
π

(81)

×
[

3F 2
η M2

η − 4F 2
KM2

K + F 2
πM2

π

F 2
πM2

π

− (r − 1)2[ε(r) + d′]

−3F 2
η M2

η dη − 4F 2
KM2

KdK + F 2
πM2

πdπ

F 2
πM2

π

]
.

This expression should be used to reexpress non-
perturbatively L7 in terms of chiral order parameters (F 2

η

is given by (74)). We can already notice that in (81),
the first contribution, which corresponds to ∆GO, is 5
to 10 times suppressed with respect to the second term
(r − 1)2[ε(r) + d′].

4 Three-flavor analysis
of ππ scattering

The quantities B0m, r, F0, L4,...,L8 appear in the bare
chiral series up to NLO. The procedure outlined above al-
lows us to express these eight quantities in terms of the
masses and decay constants of Goldstone bosons. Apart
from the (presumably small) six NNLO remainders dP

and eP , this leaves three unknown parameters. We choose
these three parameters to be the order parameters X(3)
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and Z(3), and the quark mass ratio r. The remaining
terms of the O(p4) chiral Lagrangian, involving the LECs
L1, L2, L3, L9, and L10, do not affect the symmetry-
breaking sector of the underlying theory in which we are
mainly interested here.

The counting of the degrees of freedom is completely
analogous to the one described in [17], where a global two-
loop fit has been performed to the masses, decay constants
and Ke4 form factors. In this reference, the LECs L1, L2
and L3 were also included and constrained by the three ex-
perimental results corresponding to the two Ke4 form fac-
tors at threshold and to their slope. The three parameters
left undetermined in the fits of [17] are the ratio of quark
masses r and the O(p4) LECs L4 and L6. The unknown
O(p6) LECs, estimated in the above reference through
a resonance saturation assumption, introduce some the-
oretical uncertainty. In our approach, this uncertainty is
included in the NNLO remainders. We keep the latter
throughout our calculation; however, at some point of the
numerical analysis we will have to make an educated guess
as to their sizes. The main differences between our ap-
proach and that of [17] lie in our use of a non-perturbative
resummation of instabilities, compared to the canonical
two-loop perturbative elimination of O(p4) LECs; in our
choice of X(3), Z(3), r as the three undetermined parame-
ters, rather than L4, L6, r; and in our treatment of higher
order remainders: in [17] they are computed up to O(p6),
and the additional LECs arising at this order are esti-
mated through resonance saturation.

In order to constrain our three independent param-
eters, more information is needed. In the present sec-
tion we will examine the impact of our knowledge of
ππ scattering observables. We have previously analyzed
the ππ data of [14] in terms of two-flavor order parame-
ters, allowing a rather precise determination of them [15]:
X(2) = 0.81 ± 0.07 and Z(2) = 0.89 ± 0.03. However, the
ππ scattering parameters are more sensitive to the two-
flavor order parameters than to the three-flavor ones [7,
11,29]. Expanding X(2) in SU(3) × SU(3) χPT one can
obtain [11]

X(2)(1 − d̄π) =
r

r + 2
[
1 − ε(r) − d − Y (3)2f1

]
+

2
r + 2

X(3) , (82)

where f1 is a (small) combination of chiral logarithms,
whose precise definition is recalled in (105) below; in [11]
the estimate f1 ∼ 0.05 was obtained.

If ε(r) is not close to 1, i.e., if r larger than 15, the
term in square brackets in (82) is dominant. Then X(2)
has only a very weak (r-suppressed) sensitivity to X(3).
On the other hand, its value is strongly correlated with
r. We expect therefore ππ scattering to provide us with
valuable information about the quark mass ratio r, but
not about the Nf = 3 order parameters X(3) and Z(3).
This section is devoted to designing a framework testing
this expectation in a quantitative way.

4.1 Low-energy ππ amplitude

Considerable progress has been achieved recently in the
understanding of ππ scattering. The solutions of the Roy
equations [30] allow one to express the amplitude, in the
whole energy domain below 800 MeV, in terms of only two
parameters (e.g., the scalar scattering lengths, or the pa-
rameters αππ and βππ defined below), with very small un-
certainty. It is therefore possible to determine experimen-
tally these two parameters in a model-independent way.
Furthermore, at low energy the ππ amplitude is strongly
constrained by chiral symmetry, crossing and unitarity.
It can be expressed, up to and including terms of order
(p/ΛH)6, as follows:

Aππ(s|t, u) = P (s|t, u) + J̄(s|t, u) + O[(p/ΛH)8], (83)

where P (s|t, u) is a polynomial conveniently written (fol-
lowing the conventions and notation of [24]) in the form

P (s|t, u) =
αππ

F 2
π

M2
π

3
+

βππ

F 2
π

(
s − 4M2

π

3

)
(84)

+
λ1

F 4
π

(
s − 2M2

π

)2
+

λ2

F 4
π

[(
t − 2M2

π

)2
+
(
u − 2M2

π

)2]

+
λ3

F 6
π

(
s − 2M2

π

)3
+

λ4

F 6
π

[(
t − 2M2

π

)3
+
(
u − 2M2

π

)3]
,

in terms of six subthreshold parameters
αππ, βππ, λ1 . . . λ4. J̄(s|t, u) collects the unitarity cuts
arising from elastic ππ intermediate states. At low energy,
the contributions of KK̄ and ηη intermediate states are
not neglected but expanded and absorbed into the poly-
nomial P (s|t, u). The general form of J̄(s|t, u) is dictated
by successive iterations of the unitarity condition, and
it is entirely determined by the first four subthreshold
parameters up to O(p6):

J̄(s|t, u) = U(s)J̄ππ(s)
+ [(s − u)V (t) + W (t)]J̄ππ(t) (85)
+ [(s − t)V (u) + W (u)]J̄ππ(u) + . . . ,

where

J̄ππ(s) =
s

16π2

∫ ∞

4M2
π

dx

x(x − s)

√
x − 4M2

π

x
, (86)

U, V, W are polynomials given in terms of the parameters
αππ, βππ, λ1, λ2 and the ellipsis stands for (known) O(p6)
contributions. (For a more explicit form, see (3.18) and
(3.47) of [24].)

As a first step, the general representation (83) of the
low-energy ππ amplitude can be matched with experimen-
tal phase shifts [14] and with the solution of the Roy equa-
tions [30] in order to determine the subthreshold param-
eters αππ, βππ, . . . This has been done in [15], indepen-
dently of any χPT expansion or predictions, leading to
the following values:

αππ = 1.381 ± 0.242 , βππ = 1.081 ± 0.023 , (87)
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with the correlation coefficient between the two parame-
ters ραβ = −0.14.

At the second stage, χPT can be used to expand the
subthreshold parameters αππ, βππ, λ1, . . . , λ4 in powers of
quark masses mu = md = m and/or ms, thereby con-
straining the possible values of the chiral order parame-
ters. Notice that the expansion of the subthreshold pa-
rameters is expected to converge better than that of the
scattering lengths, the latter being more sensitive to small
variations of the pion mass. Similarly, as already discussed
in Sects. 2 and 3, one should bear in mind the possibil-
ity of a strong dependence of F 2

π on ms: it seems there-
fore preferable to consider the expansion of F 4

πAππ, i.e.,
the on-shell four-point function of the axial-vector cur-
rent (rather than the scattering amplitude itself) in pow-
ers of quark masses and external pion momenta. In [15]
the corresponding expansion of subthreshold parameters
αππ and βππ in powers of m (with ms fixed at its physi-
cal value) was converted into a determination of the two-
flavor order parameters X(2) and Z(2). Now we consider
the “bare expansion” of F 2

πM2
παππ and of the slope param-

eter F 2
πβππ in powers of m and ms in order to investigate

directly how tightly the available ππ experimental infor-
mation constrains the three-flavor condensate X(3) and
decay constant F0 (or Z(3)), and the quark mass ratio
r = ms/m.

In order to establish the “bare” SU(3)×SU(3) expan-
sion of F 2

πM2
παππ and of F 2

πβππ we proceed as follows. We
start by rewriting the LO and NLO χPT contributions in
a form similar to (83):

F 4
πAππ(s|t, u) = F 4

πP r(s|t, u) + F 4
πJr(s|t, u) + . . . (88)

P r(s|t, u) collects all LO and NLO tree and tadpole con-
tributions and is of the form (84) with the two cubic terms
omitted. The second term collects the one-loop contri-
bution of order O(p4). Both are renormalized and sepa-
rately depend on the renormalization scale µ. The loop
part reads

F 4
πJr(s|t, u) = s2

[
1
2
Jr

ππ(s) +
1
8
Jr

KK(s)
]

+M4
π

[
−1

2
Jr

ππ(s) +
1
18

Jr
ηη(s)

]

+
1
4
[
(t − 2M2

π)2Jr
ππ(t) + (u − 2M2

π)2Jr
ππ(u)

]
+(s − u)t

[
Mr

ππ(t) +
1
2
Mr

KK(t)
]

+(s − t)u
[
Mr

ππ(u) +
1
2
Mr

KK(u)
]

. (89)

Here Jr
PP and Mr

PP are the standard loop functions for
the Goldstone boson P (see, e.g., [24]). They are related
to the functions J̄PP (s) through

Jr
PP (s) = J̄PP (s) − 2kPP , (90)

Mr
PP (s) =

s − 4M2
P

12s
J̄PP (s) − 1

6
kPP +

1
288π2 . (91)

At low energy and for P = K, η, the loop functions are
replaced by their expansion at small s:

Jr
PP = −2kPP , Mr

PP = −1
6
kPP . (92)

In these equations, we have kPP = [log(M2
P /µ2)+1]/32π2.

Multiplying (85) by F 4
π and dropping all terms beyond

O(p4), one should recover the formula (89). This fact can
be used to work out the bare expansion of the subthreshold
parameters contained in F 4

πP (s|t, u). Comparing (85) and
(89) leads to

F 4
πP (s|t, u) = F 4

πP r(s|t, u) − s2
(

kππ +
1
4
kKK

)

+M4
π

(
kππ − 1

9
kηη

)

−1
2
[(t − 2M2

π)2 + (u − 2M2
π)2]kππ (93)

−1
6
[(s − u)t + (s − t)u]

(
kππ +

1
2
kKK − 1

48π2

)
,

which holds for all powers of s, t, u provided that one
retains just the LO and NLO powers in quark masses
in the expression of corresponding coefficients. In agree-
ment with the convention explained in Sect. 2.2, we keep
the physical Goldstone boson masses in the arguments of
chiral logarithms arising from both tadpoles and unitar-
ity loops. The right-hand side of (93) is checked to be
independent of the renormalization scale µ. The result-
ing “bare expansion” of the two subthreshold parameters
which carry information on the symmetry-breaking sector
reads

F 2
πM2

παππ = 2mΣ(3) + 16m2A + 2m(8m + ms)Zs

− 8m2B0(ξ + 2ξ̃)

+
1

8π2 m2B2
0

(
4 log

M2
K

M2
π

− 7
3

)
+ F 2

πM2
πdα,ππ , (94)

F 2
πβππ = F 2

0 + 4mξ + 2(4m + ms)ξ̃ (95)

+
1

4π2 mB0

[
log

M2
η

M2
K

+ 2 log
M2

K

M2
π

− 5
4

]
+ F 2

πeβ,ππ .

The subthreshold parameters are thus expressed in terms
of A, Zs, ξ, ξ̃, which are defined in Appendix A as scale-
invariant combinations of the O(p4) LECs and chiral log-
arithms. In order to account for NNLO and higher chiral
orders, we have added in (94)–(95) the direct NNLO re-
mainders dα,ππ and eβ,ππ. (Their exact role in our analy-
sis will be discussed shortly.) We would like to stress that
the only quantities we really subject to a chiral expansion
are the subthreshold parameters multiplied by appropri-
ate powers of F 2

π and M2
π . The scattering amplitude as

a function of s, t, u is given by (83), which holds up to
and including O(p6) accuracy with all singularities and
threshold factors correctly described using the physical
Goldstone boson masses.

We have just illustrated how the bare expansion of
subthreshold parameters is obtained in practice. The last
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step now consists in replacing in the bare expansion (94)
and (95) the parameters of the Lagrangian mB0, msB0
L4(µ), L5(µ), L6(µ), L8(µ) by the three basic QCD pa-
rameters X(3), Z(3), r = ms/m using the identities (61)–
(67), which yields

αππ = 1 + 3
rε(r)
r + 2

+ 2
1 − X(3)

r + 2

+ 4
1 − Y (3)

r + 2
− 2

Y (3)rη(r)
r + 2

− M2
π

32π2F 2
π

Y (3)2
{

7
3

(96)

+
r

r2 + r − 2

[
(r + 2) log

M2
η

M2
K

− (r − 2) log
M2

K

M2
π

]}

− 6
r + 2

d +
4Y (3)
r + 2

e − 2Y (3)e′ + [(dα − d) + 4d′] ,

βππ = 1 +
rη(r)
r + 2

+ 2
1 − Z(3)

r + 2

+
M2

π

32π2F 2
π

Y (3) {−5

+
r

r2 + r − 2

[
(2r + 1) log

M2
η

M2
K

+ (4r + 1) log
M2

K

M2
π

]}

− 2
r + 2

e + [(eβ − e) + 2e′] . (97)

These equations relate the two observable quantities
αππ and βππ to the three independent parameters
X(3), Z(3), r (recall that Y (3) = X(3)/Z(3)), and con-
tain the dependence on the direct remainders dα,ππ, eβ,ππ

as well as on the indirect ones, stemming from the mass
and decay constant identities. The order of magnitude of
such remainders can be estimated and will be discussed
later.

4.2 The Bayesian approach

The determination of the three-flavor order parameters
from the experimental knowledge of αππ and βππ is a sub-
tle issue, due to the non-linear character of (96) and (97)
and to the fact that our three independent parameters
are subject to constraints (e.g., they have to be positive).
Moreover, the NNLO remainders are in fact unknown; we
can only estimate their order of magnitude. One is led
to consider them as sources of error, but the propagation
of errors is not so straightforward, precisely because of
the above-mentioned non-linearities. For these reasons the
standard method of maximum likelihood is inadequate in
this case. A convenient approach is provided by Bayesian
analysis [22], as described in Appendix B.

We introduce the correlated probability density func-
tion Pexp(αππ, βππ),

Pexp(αππ, βππ) =

√
det C

2π
exp

(
−1

2
V TCV

)
,

V =

(
αππ − αexp

βππ − βexp

)
, C =

(
c11 c12

c12 c22

)
, (98)

with 1/c11 = δ2
α(1 − ρ2

αβ), 1/c22 = δ2
β(1 − ρ2

αβ), 1/c12 =
−δαδβ(1 − ρ2

αβ)/ραβ , and where αexp, βexp, δα, δβ and
ραβ are the experimental results, uncertainties and corre-
lations given in (87). This distribution summarizes the
experimental result: the two numbers, αexp and βexp,
given with an accuracy specified by the matrix C. Sup-
pose now that we know, independently, the true values
of (αππ, βππ); (98) can then be interpreted as the proba-
bility of obtaining, when performing an experiment, the
values (αexp, βexp), i.e., the actual observed values, given
our independent knowledge of (αππ, βππ). Equation (98) is
completely symmetric under exchange of (αππ, βππ) with
(αexp, βexp).

This last interpretation is suitable for our problem,
in which theory relates the subthreshold parameters αππ

and βππ to the three parameters X(3), Z(3), r and to the
remainders:

αππ = A[r, Y (3), Z(3), δ1, δ2, δ3, δ4] , (99)
βππ = B[r, Y (3), Z(3), δ2, δ5]. (100)

The relevant remainders, denoted by δi, i = 1, ..., 5, are
defined in Table 1; δ6 and δ7 are additional remainders
discussed in the following section. Therefore we can say
that the probability of obtaining the data effectively ob-
served, for a given choice of r, Y (3), Z(3), δi, is

P (data|r, Y, Z, δi) = Pexp[A(r, Y, Z, δi),B(r, Y, Z, δi)].
(101)

This quantity is the likelihood of the observed experimen-
tal data. Indeed, it is not what we are interested in: data
have certainly been observed, whereas the theoretical pa-
rameters are unknown to us. Instead, the probability that
we need is P (r, Y, Z, δi|data). This object can be calcu-
lated as a result of a statistical inference using Bayes’ the-
orem, at the price of introducing some “subjective” a pri-
ori knowledge of the theoretical parameters, π(r, Y, Z, δi).
The result of the experiment is viewed as an update of our
previous knowledge of the theoretical parameters, repre-
sented by the “prior” π(r, Y, Z, δi),

P (r, Y, Z, δi|data) (102)

=
P (data|r, Y, Z, δi) · π(r, Y, Z, δi)∫

dr dY dZ dδi P (data|r, Y, Z, δi) · π(r, Y, Z, δi)
.

The stronger the significance of the data, the weaker will
be the dependence of the final result on our choice of the
prior.

4.3 Choice of the prior

The prior should reflect our beliefs about the theoretical
parameters before our learning of experimental results. If
we have no reason to prefer one value to any other, then
a flat prior should be chosen. We certainly have to imple-
ment the requirement of positivity for X(3) and Z(3), so
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Table 1. Definition of NNLO remainders. σi denotes the ex-
pected order of magnitude, and barred remainders are taken
in the Nf = 2 chiral limit

Remainder Definition σi

δ1 d 0.1
δ2 e 0.1
δ3 e′ 0.01
δ4 (dα,ππ − d) + 4d′ 0.03
δ5 (eβ,ππ − e) + 2e′ 0.03
δ6 [(1 + 2/r)(d̄π − d) + 2d/r]/(1 − d) 0.03
δ7 [(1 + 2/r)(ēπ − e) + 2e/r]/(1 − e) 0.03

the support of the function π will have a lower boundary
at X(3) = 0, Z(3) = 0. A similar requirement can be ap-
plied to the two-flavor order parameters X(2) and Z(2).
Using their expansions in the SU(3)×SU(3) χPT one can
obtain [11]

X(2)(1 − d̄π) = X(3) (103)

+
r

r + 2
[
1 − X(3) − ε(r) − d − Y (3)2f1

]
,

Z(2)(1 − ēπ) = Z(3) (104)

+
r

r + 2
[1 − Z(3) − η(r) − e − Y (3)g1] ,

where f1 and g1 are (small) combinations of chiral loga-
rithms,

f1 =
M2

π

32π2F 2
π

[
r

r − 1

(
3 log

M2
K

M2
π

+ log
M2

η

M2
K

)

−(r + 2)

(
log

M2
K

M̄2
K

+
2
9

log
M2

η

M̄2
η

)]
, (105)

g1 =
M2

π

32π2F 2
π

[
4r + 1
r − 1

log
M2

K

M2
π

+
2r + 1
r − 1

log
M2

η

M2
K

−(r + 2) log
M2

K

M̄2
K

]
, (106)

estimated in [11] as f1 ∼ 0.05 and g1 ∼ 0.07, and barred
quantities refer to the SU(2) × SU(2) chiral limit. The
positivity of X(2) and Z(2) implies then a lower bound
for the indirect remainders δ1 and δ2,

X(2) ≥ 0 ↔ δ1 ≤ δmax
1 = 1 − ε(r) − Y (3)2f1 ,

(107)
Z(2) ≥ 0 ↔ δ2 ≤ δmax

2 = 1 − η(r) − Y (3)g1 .

(108)

Actually one can also establish some upper bounds for the
order parameters X(3) and Z(3) using the so-called para-
magnetic inequalities (3) and (4) stated in [11]6, which

6 The statement is that chiral order parameters dominated
by the infrared end of the spectrum of the Euclidean Dirac

translate into lower bounds for the remainders δ6 and δ7
defined in Table 1,

X(3) ≤ X(2) (109)

↔ δ6 ≥ δmin
6 = 1 − 1 − δ1 − ε(r) − Y (3)2f1

X(3)(1 − δ1)
,

Z(3) ≤ Z(2) (110)

↔ δ7 ≥ δmin
7 = 1 − 1 − δ2 − η(r) − Y (3)g1

Z(3)(1 − δ2)
.

The ratio of order parameters Y (3) is also bounded from
above, as can be seen from (60):

Y (3) ≤ Y max = 2
1 − ε(r) − δ1

1 − η(r) − δ2
. (111)

We do not assume any further knowledge about the three-
flavor order parameters. The hypothesis of a strict con-
vergence of the chiral series, in the sense that every order
of the expansion should be smaller than the previous one,
would lead to the choice of a prior concentrated around the
values X(3) ∼ 1 and Z(3) ∼ 1. In our approach this is not
required; we allow the data to indicate whether vacuum
fluctuations destabilize the chiral series or not. Therefore,
apart from the constraints listed above, we will choose a
flat prior for the three-flavor order parameters. In fact,
this statement is ambiguous, since we have introduced
three different quantities, X(3), Y (3) and Z(3), related by
X(3) = Y (3)Z(3). If we restrict the problem to a flat prior
in two parameters among [X(3), Y (3), Z(3)] ≡ (X, Y, Z),
we can get three different prior p.d.f.’s in (Y,Z):

(X, Z) : π(Y, Z)dY dZ = dXdZ = ZdY dZ

↪→ π(Y, Z) = Z ,

(X, Y ) : π(Y, Z)dY dZ = dXdY = Y dY dZ

↪→ π(Y, Z) = Y ,

(Y, Z) : π(Y, Z)dY dZ = dY dZ

↪→ π(Y, Z) = 1 .

(112)
A physical argument helps us to select one of these possi-
bilities. When Z(3) vanishes, chiral symmetry restoration
occurs and the marginal probabilities of the chiral order
parameters must vanish. This can be obtained if the prior
p.d.f. vanishes in the limit Z(3) → 0, which is realized
in the case of a flat prior in (X, Z). Henceforth, we will
focus on this case and therefore take π(Y, Z) = Z inside
the range allowed by the positivity and paramagnetic con-
straints, and π(Y, Z) = 0 outside.

Inspired by (32), we restrict the range of variation of
r such that 0 ≤ ε(r) ≤ 1, which yields the range

r1 ≤ r ≤ r2 , (113)

with

r1 = 2
FKMK

FπMπ
− 1 ∼ 8 , r2 = 2

F 2
KM2

K

F 2
πM2

π

− 1 ∼ 36 . (114)

operator should decrease as the number of massless flavors in-
creases. The paramagnetic inequalities also apply to X(Nf )
and Z(Nf ), for Nf = 2, 3.
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No other previous knowledge is supposed for the quark
mass ratio r, so the prior is taken to be flat in r over this
allowed domain.

Finally, we must discuss how to treat the remainders
δ1, . . . , δ7. We recall that they are defined as the NNLO
contributions in the chiral expansions of a selected class
of observables, for which a good overall convergence is ex-
pected. Therefore, the remainders should be small. This
expectation can be implemented in the prior by consider-
ing the remainders as Gaussian distributions centered at
zero, with widths corresponding to their expected order
of magnitude. Since the size of the corrections in the chi-
ral series is 30% for the three-flavor expansions and 10%
for the two-flavor ones, we will use the following rule of
thumb, already introduced in footnote 3: the typical size
of the remainders is (30%)2 = 0.1 for genuine O(m2

s) re-
mainders like d, e, 30%×10% = 0.03 for an O(msm) com-
bination of remainders (such as dα −d, eβ − e; see below),
and 0.01 for e′ = O(e/r) and d′ = O(d/r). These assump-
tions for the widths of the Gaussian distributions of the
remainders are collected in the last column of Table 1.

As far as Table 1 is concerned, we still have to show
that the two combinations dα,ππ − dπ and eβ,ππ − eπ,
contributing to the remainders δ4 and δ5, are of or-
der O(mms), instead of O(m2

s). This follows from a
SU(2) × SU(2) low-energy theorem: consider the sub-
threshold parameters αππ and βππ in the Nf = 2 chi-
ral limit, mu, md → 0; from their SU(2) × SU(2) chiral
expansion in powers of m – (32) and (33) of [15] – it is
straightforward to conclude that

lim
m→0

αππ = 1, lim
m→0

βππ = 1. (115)

Then we combine the SU(3)×SU(3) chiral expansions of
the subthreshold parameters and the mass and decay con-
stant identities for the pion, by subtracting (143) from (96)
[and (148) from (97)], which yields the following equalities:

F 2
πM2

π(αππ − 1) = 12m2A + 12m2Zs

−M2
πY (3)4m(ξ + 2ξ̃)

+
M4

π

32π2 Y (3)2
(

log
M2

K

M2
π

− log
M2

η

M2
K

− 7
3

)

+F 2
πM2

π(dα,ππ − dπ) , (116)

F 2
π (βππ − 1) = 2mξ + 4mξ̃

+
M2

πY (3)
16π2

(
log

M2
η

M2
K

+ 2 log
M2

K

M2
π

− 5
2

)

+F 2
π (eβ,ππ − eπ) . (117)

On the right-hand side of (116) [(117)], all the terms in-
volving O(p4) LECs and chiral logarithms are of O(m2)
[O(m)]. If we divide (116) by F 2

πM2
π [(117) by F 2

π ] and
take the Nf = 2 chiral limit m → 0, all the terms vanish
apart from the NNLO remainders. The latter must there-
fore fulfill the following condition:

lim
m→0

(dα,ππ − dπ) = 0, lim
m→0

(eβ,ππ − eπ) = 0, (118)

so that the difference between dα,ππ and dπ [eβ,ππ and eπ]
is only of order O(mms).

Having collected all the ingredients for our choice of
the prior, we can now perform the integration over the
NNLO remainders to obtain P (r, Y, Z|data). If we inte-
grate the latter with respect to two parameters, we end
up with the marginal (posterior) probabilities:

P (r|data) =
∫

dY dZ P (r, Y, Z|data), (119)

P (Y |data) =
∫

dr dZ P (r, Y, Z|data), (120)

P (Z|data) =
∫

dY dY P (r, Y, Z|data), (121)

P (X|data) =
∫

dr dY dZ δ(Y Z − X) P (r, Y, Z|data)

=
∫

dr dZ
1
Z

P (r, X/Z, Z|data). (122)

The precise expression of P and the numerical evaluation
of these integrals are detailed in Appendix C.

4.4 Discussion and results

Even if no information from ππ scattering data is included,
the results of the integrations (119)–(122) are non-trivial,
because of the interplay of the various constraints im-
posed. For instance, the prior for r, when integrated over
all other variables, will no longer be uniform. The prob-
ability density profiles of Fig. 1 are obtained by replacing
P (r, Y, Z, δi|data) with π(r, Y, Z, δi) and integrating over
all but one variable. They can be interpreted as a mea-
sure of the “phase space” for each parameter allowed by
the theoretical constraints. The significance of the ππ data
will be seen in the modification induced with respect to
such “reference” density profiles.

In the present framework, we may make more quan-
titative the well-known mechanism by which a low value
of r implies a suppression of the quark condensate [11].
In Fig. 2 we show the reference probability density pro-
files for X, when the quark mass ratio r is taken fixed at
different values, r = 25, 20, 15, 10. (The ratio of the order
parameters Y (3) behaves similarly.)

Notice that for small values of r, for which X(3) is very
small, the two-flavor order parameter X(2) should also be
small. This is clear from inspection of (103) and (104),
because ε(r) ∼ 1. Since we know from our SU(2)×SU(2)
analysis [15] of the same ππ data that X(2) is very close
to 1, we can expect that such data will constrain r to stay
away from such small values. This is what we observe in
Fig. 3, in which we show the marginal probability density
profile for r with the inclusion of the ππ experimental
data.

These data induce a substantial change in the distri-
bution as compared to the reference probability density
profile (restricted phase space). However, such a broad
distribution cannot be used for a real determination of r;
at most a lower bound for r can be given in probabilistic
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Fig. 1. The reference probability density profiles for the order
parameters X(3) (full) and Z(3) (dashed) [top], and for the
quark mass ratio r [bottom]
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Fig. 2. The reference probability density profiles for the order
parameter X(3) when the quark mass ratio r is taken fixed at
four different values

terms: r ≥ 14 at 95% confidence level. The most probable
value of r lies at r = 21–22, very close to standard expec-
tations. Indeed, the motivation for the rearrangement of
the chiral expansions, namely the possible importance of
vacuum fluctuations and their potential to destabilize the
chiral series, is not essential in the case of r: the fluctuation
parameters L4 and L6 are absent from the perturbative
reexpression of the chiral series of r, see (46), which may
thus exhibit no instability even in the case of large fluc-
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Fig. 3. The probability density profile for r inferred from the
ππ data (thick lines) as compared to the reference one (thin
dotted line). The different curves represent different choices
for the prior. The full line corresponds to the choice of priors
indicated in the previous section. The dashed-dotted line is
obtained by reducing the widths for the prior distributions of
the remainders by a factor of 2, the dotted line by increasing
the widths by a factor of 2

tuations. It is therefore not surprising that similar values
of r are obtained through the perturbative expansion (46)
or the non-perturbative framework presented above. Such
similarity is actually a welcome check of the approach ad-
vocated in this paper.

We also show in Fig. 3 the dependence of the inferred
probability density profile on the initial choice of the prior:
the full line refers to the choice of priors described in
Sect. 4.3, while the dashed-dotted one (dotted one) cor-
responds to a distribution for the remainders with half
widths (double widths), as compared to Table 1. As ex-
pected, broader Gaussians for the NNLO remainders lead
to a flatter p.d.f. for r – the impact of experimental infor-
mation is weakened when higher orders are allowed to be
larger. If the most probable value of r depends to some
extent on the choice of the prior, the same is not true for
the 95% lower bound, which is almost the same for all
distributions.

A comment on the so-called “Kaplan–Manohar am-
biguity” is in order here. In [31], it was shown that the
sum of the O(p2) and O(p4) chiral Lagrangian remained
unchanged under a shift in the quark masses:

m → m + λmms , ms → ms + λm2 , (123)

and a corresponding redefinition of the O(p4) LECs L6,7,8.
This seemingly prevents any determination of the quark
mass ratio r. However, the Kaplan–Manohar ambiguity
also induces a shift in the O(p6) terms included in the
NNLO remainders (neglected in a perturbative treatment
of O(p4) expansions). We have assumed a good overall
convergence of the chiral series and therefore required
small NNLO remainders, which corresponds to fixing the
Kaplan–Manohar ambiguity. We point out that this hy-
pothesis is not specific to our framework and is a fairly
general assumption when dealing with chiral series.

On the other hand not much deviation is caused by ππ
data with respect to the reference profiles for X(3), Z(3)



218 S. Descotes-Genon et al.: Resumming QCD vacuum fluctuations in three-flavor Chiral Perturbation Theory

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 0.2 0.4 0.6 0.8 1

P

P(X)

P(Z)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Y(3)

P(
Y

)
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lines to Z(3) [top] and full lines to the ratio of order parameters
Y (3) [bottom]

and Y (3), as is clear from Fig. 4. This is an indication of
the fact that ππ data, as was expected, are not sensitive
enough to X(3) and Z(3). Their determination would re-
quire the inclusion of other observables, which we discuss
now.

5 Other sources of constraints
on X(3) and Z(3)

We now briefly mention some possible sources of indepen-
dent experimental information on the three-flavor chiral
order parameters X(3) and Z(3), or equivalently on the
O(p4) fluctuation parameters Y 2(3)L6 and Y (3)L4. The
combination of O(p4) LECs (∆L8 + 2∆L6), invariant un-
der the Kaplan–Manohar transformation, is of particular
interest. It appears in many observables and has remained
undetermined so far. Y 2(3)L8 is essentially given by r
through (40): Y 2(3)∆L8 = 0.99 · 10−3 for r = 25 (where
the NNLO remainders are neglected). From the positivity
of X(3) and its relation to the fluctuation parameter L6
(32), one gets the following upper bound for L6:

Y 2(3)∆L6 ≤ 1
16(r + 2)

F 2
π

M2
π

[1 − ε(r) − d] , (124)

which implies that Y 2(3)∆L6 ≤ 0.98 · 10−3 for r = 25
(with an expected uncertainty of 10 % from NNLO re-
mainders). Between the limit of no fluctuations and that
of maximal fluctuations, the combination of LECs Y 2(3)×
[∆L8 + 2∆L6] can thus vary in the range:

1.0 · 10−3 ≤ Y 2(3)[∆L8 + 2∆L6] ≤ 3.0 · 10−3. [r = 25]
(125)

This combination can be perturbatively related to the
LEC �̄3 [1] of the Nf = 2 chiral Lagrangian; see (11.6) in
[3]. In the limit of no fluctuations, �̄3 is a positive number
of O(1); the estimate �̄3 = 2.9 ± 2.4 was obtained in [1]
under the assumption of the validity of the Zweig rule. If
larger vacuum fluctuations make Y 2(3)[∆L8 + 2∆L6] in-
crease, �̄3 decreases towards negative values with a larger
magnitude. Thus, in principle, the size of vacuum fluctu-
ations could be investigated through an accurate deter-
mination of �̄3 obtained from ππ scattering parameters.
Unfortunately, experimental information at such an ac-
curacy is not available due to a large uncertainty in the
scattering length a2

0, which is not tightly constrained by
available Ke4 decay experiments7. Therefore, we have to
consider other sources of information in order to constrain
the Nf = 3 order parameters.

5.1 Goldstone boson scattering and decays

In order to estimate the size of the vacuum fluctuations of
ss̄ pairs, processes directly involving strange mesons are
required. Before sketching how our method could be ex-
tended to the relevant processes, we want to comment on a
few estimates of the O(p4) LECs L4 and L6 that are avail-
able in the literature. These estimates show a common
feature: they rely on the standard (perturbative) treat-
ment of vacuum fluctuations, assuming that the latter are
small, but they lead to L4 and L6 becoming significantly
larger than their critical values. These estimates should
therefore be considered at most as valuable hints of the
internal inconsistency of the perturbative treatment.

Büttiker et al. [33] have analyzed the πK → πK and
ππ → KK̄ amplitudes, thereby obtaining the amplitudes
at threshold and in the subthreshold region. Comparing
these results with the O(p4) χPT expansion of Bernard
et al. [25], they determine the LECs Li (i = 1, 4) and the
combination L8 + 2L6:

103[Lr
8 + 2Lr

6](Mρ) = 3.66 ± 1.52 . (126)

The large uncertainty quoted is reflected in the uncer-
tainty in the scattering lengths combination a

1/2
0 + 2a

3/2
0 .

This could improve considerably once experimental results
from πK atoms become available. However, the analysis

7 The available ππ scattering data were analyzed in [15],
yielding �̄3 = −18.5 ± 16.7 and thus suggesting an important
role played by vacuum fluctuations. If the experimental in-
formation on the I = 2 channel is replaced by a theoretical
constraint concerning the scalar radius of the pion [32,15], �̄3
becomes a small positive number compatible with the absence
of fluctuations.
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is based on O(p4) χPT, in which the implicit assumption
is made that Y (3) = 1. From our bounds (125), taking
Y (3) = 1, we obtain

0.27 ≤ 103[Lr
8 + 2Lr

6](Mρ) ≤ 2.3. [r = 25, Y (3) = 1]
(127)

It is clear that the values for L8 + 2L6 given in [33]
are barely compatible with the assumption of Y (3) = 1.
Furthermore, the authors of [33] estimate 103Lr

4(Mρ) =
0.50 ± 0.39, which implies 103∆L4 = 1.0 ± 0.39 and sug-
gests significant violation of the Zweig rule in the scalar
sector [see (51)]. Both remarks call for a comparison of
πK scattering amplitudes with a chiral expansion treat-
ing non-perturbatively (possibly large) vacuum fluctua-
tions [26].

Recently, Bijnens and Dhonte [20] have calculated the
π and K scalar form factors at two loops in Nf = 3 χPT;
they then fit their results to the corresponding dispersive
representation based on the solution of the multi-channel
Omnès–Muskhelishvili equations [5,6]. In order to obtain
“decent fits” for the form factors at zero momentum trans-
fer, they found that the LECs L4 and L6 had to satisfy
the constraint

Lr
6(Mρ) ∼< 0.6 × Lr

4(Mρ) + 0.4 · 10−3 . (128)

If we take this to imply that [2Lr
6 − Lr

4](Mρ) ∼< 0.8 · 10−3,
then we can rewrite the constraint in terms of the fluctu-
ation parameters ρ, λ introduced in Sect. 3:

ρ − λ ∼< 1.6. [r = 25] (129)

Recalling (60), the convergence of the perturbative ex-
pansion of Y (3) = 2mB0/M

2
π requires ρ − λ � 1. Viewed

in this light, the constraint of [20] is not surprising: it
is simply the observation that the authors, within their
perturbative analysis, cannot find a good fit to a pertur-
bative χPT expansion in the presence of large vacuum
fluctuations. In addition, they find that requiring that the
values of the scalar form factors at zero not deviate too
much from their lowest order values leads to the estimate
0.3 ≤ 103Lr

4(Mρ) ≤ 0.6. Note that this result is roughly in
agreement with that of [33] discussed above. According to
Table 2 of [20], this value of L4 leads to a suppression of
Z(3) down to half of Z(2), as can be checked from (32). All
these considerations suggest sizeable vacuum fluctuations
in the scalar sector.

We outline now how additional observables coming
from Goldstone boson scattering and decay could be in-
corporated naturally in the Bayesian machinery, in order
to constrain the size of vacuum fluctuations, or equiv-
alently X(3) and Z(3). The most obvious candidate is
πK scattering. The first step consists in using analytic-
ity, unitarity, crossing symmetry in conjunction with ex-
perimental data in order to constrain as much as pos-
sible the low-energy πK scattering amplitude [33]. The
second stage corresponds to an analysis similar to that
in the case of ππ scattering: establish a dispersive repre-
sentation of the amplitude with subthreshold parameters
(i.e., subtraction constants like αππ and βππ), determine

the value of these parameters from experiment, then in-
clude these parameters as additional observables for the
Bayesian analysis. The expected outcome should be more
stringent constraints on X(3) and Z(3) [26].

The decay η → 3π is a second process of interest [34].
The standard treatment of this decay starts with the ra-
tio Aη→3π/∆K , where Aη→3π is the decay amplitude and
∆K = (M2

K+ − M2
K0)QCD. This ratio is then perturba-

tively reexpressed in terms of the Goldstone boson masses
and a single O(p4) LEC L3. As stressed previously, a bare
chiral expansion of ratios of QCD correlation functions
that are only conditionally convergent may exhibit insta-
bilities. To cope with possibly large vacuum fluctuations,
a better starting point could be the expansion of the quan-
tity F 3

πFηAη→3π, which is linearly related to a QCD corre-
lation function. Such an expansion will involve more LECs
and order parameters and allow the extraction of the lat-
ter from the data. Since the decay η → 3π is forbidden in
the isospin limit mu = md, we must start by extending the
previous discussion of Goldstone boson masses and decay
constants to include isospin breaking. A dispersive repre-
sentation of the amplitude Aη→3π must then be written
to define convenient observables. The dispersion relations
are here more involved than in the case of ππ and πK
scattering: they require studying ηπ → ππ and perform-
ing subsequently an analytical continuation to the (phys-
ical) decay channel. The observables thus defined, related
to the behavior of the decay amplitude at the center of
the Dalitz plot (via slope parameters), can be exploited
in our Bayesian framework in order to constrain further
the three-flavor chiral order parameters and to extract the
quark mass ratios mu/ms and md/ms.

5.2 Two-point functions and sum rules

In this paper, our aim was in particular to pin down X(3),
i.e., the Nf = 3 chiral condensate measured in physi-
cal units, which governs the behavior of QCD correlation
functions in the limit mu = md = ms = 0. Related though
different quantities arise when the high-energy limit of the
same correlation functions is studied through the opera-
tor product expansion (OPE). Local condensates appear
then, and those with the lowest dimension are

Σu = −〈0|ūu|0〉 , Σd = −〈0|d̄d|0〉 , Σs = −〈0|s̄s|0〉 ,
(130)

where the physical vacuum of the theory is denoted |0〉
with all the quarks carrying their physical masses: no chi-
ral limit is taken.

These OPE quark condensates occur in various sum
rules for two-point correlators and could thus be deter-
mined in this framework [35]. First, they arise (multiplied
by a mass term) in the high-energy tail of the correla-
tors as dimension-4 operators. (For example, see [36] for
the case of pseudoscalar densities.) Next, in some sum
rules, normal-ordered condensates of the type (130) ap-
pear through chiral Ward identities. For instance, in the
case of the divergence of the strangeness-changing vector
current [37,38], the strange-quark mass is determined via a
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sum rule with no subtraction, but another sum rule can be
written with the subtraction constant (ms−mu)(Σs−Σu),
providing in principle some information on the OPE quark
condensates. Unfortunately, the high-energy tail of the
(Borel transformed) two-point function involved in this
case has a QCD expansion which behaves quite badly
and prevents any accurate determination. Lastly, the OPE
quark condensates arise when factorization is invoked to
reexpress higher-dimensional four-quark operators as the
square of q̄q vacuum expectation values.

We stress that the OPE quark condensates Σu, Σd, Σs

have a different definition (and thus value) from the chiral
condensates that we have considered here and in [15]:

Σ(2) ≡ − lim
mu,md→0

〈0|ūu|0〉
= lim

mu,md→0
Σu = lim

mu,md→0
Σd , (131)

Σ(3) ≡ − lim
mu,md,ms→0

〈0|ūu|0〉
= lim

mu,md,ms→0
Σu = lim

mu,md,ms→0
Σd

= lim
mu,md,ms→0

Σs . (132)

In particular, Σu, Σd, Σs exhibit an ultraviolet divergence
that must be renormalized; therefore, their definitions and
their values depend on the convention applied. It is pos-
sible to relate them to Σ(3) using Nf = 3 χPT. For in-
stance, if we take (9.1) in [3] in the isospin limit, we get

Xu,d ≡ 2mΣu,d

F 2
πM2

π

= X(3)

+[Y (3)]2
M2

π

F 2
π

[16(r + 2)∆L6 + 4(2∆L8 + ∆H2)]

+dΣ;u,d (133)

= 1 − 1
2
ε(r) + 4[Y (3)]2

M2
π

F 2
π

∆H2 − d +
1
2
d′ + dΣ;u,d ,

Xs ≡ 2mΣs

F 2
πM2

π

= X(3)

+[Y (3)]2
M2

π

F 2
π

[16(r + 2)∆L6 + 4r(2∆L8 + ∆H2)]

+dΣ;s

= 1 +
r − 2

2
ε(r) + 4r[Y (3)]2

M2
π

F 2
π

∆H2

−d +
r

2
d′ + dΣ;s , (134)

where the NNLO remainders are denoted dΣ;u,d and dΣ;s,
and the O(p4) high-energy counterterm Hr

2 arises in the
combination

∆H2 = Hr
2 (µ) − 1

128π2

(
1
2

log
M2

K

µ2 +
1
3

log
M2

η

µ2

)

− 1
256π2(r − 1)

(
3 log

M2
K

M2
π

+ log
M2

η

M2
K

)
. (135)

The value of such high-energy counterterms cannot be
fixed by low-energy data only, and their presence in the
chiral expansions is merely a manifestation of the renor-
malization-scheme dependence of the OPE quark conden-
sates.

An interesting relation, free from high-energy coun-
terterms, exists between the OPE condensates:

rXu,d − Xs

r − 1
= 1 − ε(r) − d +

r

r − 1
dΣ;u,d − 1

r − 1
dΣ;s .

(136)
Two conclusions can be drawn from this relation. First,
for r larger than 15, (136) shows that Xu,d is close to
[1 − ε(r) − d], while we see from (82) that X(2)(1 − d̄π)
equals [1−ε(r)−d] up to 1/r-suppressed corrections. Σu,d

should thus be very close to Σ(2), which was expected
since the u, d quarks are very light and the physical world
is near the Nf = 2 chiral limit.

The second conclusion is that Xs −Xu,d can hardly be
obtained from such a relation, since Xu,d and 1 − ε(r) − d
largely cancel. Thus, very accurate knowledge of r and
Xu,d would be needed to determine Xs this way. More
generally, the possibility of significant vacuum fluctuations
of ss̄ pairs makes it difficult to relate in a quantitative way
Σ(3) and the OPE quark condensates Σud, Σs.

Such a relation between OPE and chiral quark conden-
sates is naturally relevant for the description of K decays.
In particular, some K → ππ weak matrix elements are
related to VEVs of four-quark operators in the Nf = 3
chiral limit, thanks to sum rules for vector–axial or scalar–
pseudoscalar correlators [39]. These sum rules are evalu-
ated by splitting the integral in two energy domains: the
low-energy region is described by experimental data, while
the high-energy behavior is obtained through the opera-
tor product expansion, which involves a priori OPE quark
condensates. However, since the sum rules are evaluated
in the chiral limit mu = md = ms → 0, these condensates
actually reduce to the Nf = 3 chiral condensate Σ(3).

The dispersive estimates of K → ππ matrix elements
could thus be affected at three different stages by signif-
icant vacuum fluctuations of ss̄ pairs leading to smaller
values of Σ(3). Firstly, extrapolating the weak matrix ele-
ments from the Nf = 3 chiral limit to the physical values
of the u, d, s quarks could not be carried out on the basis
of the usual treatment and values of LECs of Nf = 3 χPT,
since the latter assume from the start a leading contribu-
tion from Σ(3). Moreover, the very estimate of the sum
rule could be modified because of the change in the high-
energy behavior of the correlator in the chiral limit. The
third question concerns dimension-6 four-quark conden-
sates, which appear at higher orders of OPE and are often
related to the square of a q̄q condensate through factor-
ization, on the basis of large-Nc arguments. The presence
of large qq̄ fluctuations might render such an assumption
invalid.

5.3 Implications for lattice simulations

In principle, the lattice should represent a particularly
favorable domain to study how QCD at low energy de-
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pends on the light-quark masses and how this dependence
is connected to the vacuum fluctuations of qq̄ pairs. Re-
cent progress has been made in this field. Discretizations
of the Dirac operator have been discovered with highly de-
sirable qualities for the simulation of light quarks. In par-
ticular, Ginsparg–Wilson fermions [40] do not break chiral
symmetry explicitly. A second (cheaper) option consists in
twisted-mass lattice QCD [41], where a parametrized ro-
tation of the mass matrix allows one to restore chiral sym-
metry partially in observables through an averaging pro-
cedure. Another avenue is provided by staggered fermions
[42], which allows one to study an odd number of flavors,
at the cost of introducing unwanted flavor degeneracies.

Vacuum fluctuations of qq̄ pairs are typical sea-quark
effects. The fermionic determinant plays here an essential
role, since we are interested in chiral parameters domi-
nated by the infrared end of the Dirac spectrum [10,11].
In order to study these effects on the lattice, it is therefore
mandatory to generate data for three dynamical flavors.
For this particular purpose, one cannot rely on quenched
data (with no dynamical quark) or on data generated
with only two dynamical quarks – even though they can
be of interest for observables relatively insensitive to the
fermion determinant, e.g., Mρ.

We will now illustrate, by considering “bare” expan-
sions of “good” observables such as F 2

πM2
π and F 2

π , how
lattice data could probe vacuum fluctuations of qq̄ pairs
and how chiral extrapolations should be dealt with if the
latter turn out to be significant. We consider a slightly
optimistic situation where lattice data with reasonable ac-
curacy can be generated for three light dynamical flavors.
For simplicity, we choose to work in the limit of degen-
erate strange and light-quark masses. The analysis could
be done for independent variations of the quark masses,
but the attendant complications do not add anything es-
sential to our conclusions. Moreover, it is likely that real-
istic lattice calculations are more easily performed in this
simplified situation. On the lattice, we denote by mL the
common mass of the three degenerate light flavors and by
M2

L and F 2
L the common mass and decay constant of the

eight degenerate Goldstone bosons. We keep m and ms

for the physical values of the quarks and F 2
π , M2

π , . . . for
the physical values of the Goldstone boson observables.

The observables F 2
L and F 2

LM2
L have thus the form

F 2
LM2

L = 2mLB0F
2
0

+64m2
LB2

0

[
3L6(µ) + L8(µ) − 1

96π2 log
M2

L

µ2

]
+F 2

LM2
LdL , (137)

F 2
L = F 2

0

+16mLB0

[
3L4(µ) + L5(µ) − 3

128π2 log
M2

L

µ2

]
+F 2

LeL , (138)

where the remainders dL, eL are of order m2
L.

Since B0, F0 and the LECs Li are all defined in the
Nf = 3 chiral limit and are thus independent of the quark
masses, we may use (61)–(67) to eliminate them in favor

of the real-world parameters X(3), Y (3), Z(3), r and the
physical values of the masses and couplings of the Gold-
stone bosons, leading to

F 2
LM2

L = b F 2
πM2

πX(3)

+ b2 F 2
πM2

π

r + 2

{
3[1 − X(3) − d] + (r − 1)[ε(r) + d′]

}

+ 2b2 M4
πY (3)2

{
−1

32π2(r + 2)

(
3 log

M2
K

M2
π

+ log
M2

η

M2
K

)

+
1

16π2

(
log

M2
K

M2
L

+
1
3

log
M2

η

M2
L

)}
+ F 2

LM2
LdL , (139)

F 2
L = F 2

πZ(3)

+ b
1

r + 2
F 2

π

{
3[1 − Z(3) − e] + (r − 1)[η(r) + e′]

}

− b
M2

πY (3)
32π2

[
1

r + 2

(
3 log

M2
η

M2
K

+ 7 log
M2

K

M2
π

)

− 2

(
log

M2
η

M2
L

+ 2 log
M2

K

M2
L

)]
+ F 2

LeL , (140)

Taking the ratio of these equations gives M2
L implicitly as

a function of b = mL/m. The remainders d, e enter the
resulting expressions multiplied by a factor of b/r; we will
ignore them as well as the 1/r-suppressed contributions
from d′, e′.

Since the chiral expansion requires small values of mL,
while present day lattice simulations prefer mL on the or-
der of ms, it is important to ascertain if there is a range of
variation for mL in which our equations may be applied
and still give valuable results. There are two different con-
ditions to be met. First, as mL increases, the degenerate
mass ML increases, eventually exceeding MK , Mη; this in
itself is of concern, since the chiral expansion becomes
unreliable as ML approaches values typical of relevant
hadronic resonances. In addition, the terms logarithmic
in M2

L become negative, and eventually the procedure de-
scribed above is unstable. Therefore, we will restrict the
range of variation of mL so that these logarithmic terms do
not contribute more than 25% of the total. This stability
criterion constrains the allowed region in the space of pa-
rameters X(3), Z(3), r, mL; however, this region includes
values of interest. For example, in Fig. 5 we show the al-
lowed region in X(3), mL/m for the illustrative choice
Z(3) = 0.6, r = 25. For mL/m ≤ 20, all values of X(3) are
possible. As can be seen in Fig. 6, with such a constraint
on mL/m, we satisfy also the first requirement since ML

does not exceed 1.5 · MK .
For values of Z(3) between 0.4 and 0.8 and of r be-

tween 20 and 30, we find that the allowed region does not
qualitatively change: so long as we keep mL/m less than
20, then all values of X(3) are permitted according to our
stability criterion. Consider, then, the variation of F 2

L and
of F 2

LM2
L as functions of mL, for fixed Z(3) and r, as shown

in Figs. 7 and 8 in the illustrative case Z(3) = 0.6, r = 25.
From (139) and (140), the general dependence on X(3)
is apparent: the X(3)-dependence must vanish for small
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Fig. 5. Stability criterion for Z(3) = 0.6, r = 25. Inside the
circle in full line [dashed line], the term logarithmic in ML con-
tributes more than 25% to F 2
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L]. All NNLO remainders
are set to zero
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Fig. 6. M2
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π as a function of b = mL/m for Z(3) = 0.6, r =
25. All NNLO remainders are set to zero

b = mL/m as well as for b = mL/m ∼ (r + 2)/3 ∼ 10
(apart from a residual dependence from the logarithms).
Therefore, the region of interest is 10 ≤ b ≤ 20. Fortu-
nately, even in this restricted interval, there is consider-
able dependence on X(3), especially for F 2

LM2
L/b. A good

knowledge of the spectrum in this range would allow us to
discriminate at least between the most extreme possibili-
ties (X(3) close to X(2), X(3) close to 0)8. We stress that

8 A first step in this direction was proposed by considering
the dependence on m and ms of the Goldstone boson masses
to extract the values of some low-energy constants for partially
quenched staggered fermions [43]. However, this was achieved
by relying on the chiral expansion of M2

P , with a perturbative
reexpression of the fundamental parameters r, X(3), Z(3) in
terms of Goldstone boson masses. Moreover, the O(p4) LECs
L4 and L6 related to the vacuum fluctuations were eliminated
through a perturbative redefinition of the parameters involved
in the chiral series. As discussed in Sects. 2 and 3, this proce-
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Fig. 7. F 2
LM2

L/(FπMπ)2/b as a function of b. Each line corre-
sponds to a different value of X(3), whereas r is set to 25. All
NNLO remainders are set to zero
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Fig. 8. F 2
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π as a function of b. Each line corresponds to
a different value of X(3), whereas r is set to 25. All NNLO
remainders are set to zero

not all the observables are equivalent for this study: for in-
stance, M2

L exhibits a much weaker sensitivity to vacuum
fluctuations, as shown in Fig. 6. This cancellation between
L6 and L4 in the case of the masses is quite usual [13] and
does not mean that the effect is absent for all observables,
as seen from Figs. 7 and 8.

We have not included the NNLO remainders dL and
eL here, but it is a straightforward exercise to take them
into account. We can check their size by writing them in
the following form:

F 2
πM2

πdπ = m2
smD1 + msm

2D2 + m3D3 ,

F 2
πeπ = m2

sE1 + msmE2 + m2E3 , (141)

where Di and Ei do contain O(p6) LECs and chiral log-
arithms. If we neglect the dependence of the chiral loga-
rithms on the quark masses when they vary from m, ms

to mL, the same quantities will appear in the analogous

dure need not be correct in the case of large vacuum fluctua-
tions.
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expression for F 2
LM2

LdL, F 2
LeL:

dL

dπ
=
[
bF 2

πM2
π

F 2
LM2

L

]
b2

r2

[
D1 + D2 + D3

D1 + D2/r + D3/r2

]
,

eL

eπ
=
[
F 2

π

F 2
L

]
b2

r2

[
E1 + E2 + E3

E1 + E2/r + E3/r2

]
. (142)

We can check easily that the first factor is of order one in
each case (see for instance Figs. 7 and 8). Therefore, we
conclude that the remainders dL, eL are expected to be of
order m2

L, i.e., of order 0.1 · b2/r2 (i.e., 10% or less). Once
the remainders are included, an accurate determination
of Z(3) is quite difficult, because F 2

L does not exhibit a
strong sensitivity to the latter. But X(3) is still accessible
because of the strong variation in the curvature of F 2

LM2
L

as a function of b.

6 Summary and conclusion

The large-Nc suppressed low-energy constants Lr
4(µ) and

Lr
6(µ) encode fluctuations of vacuum s̄s pairs. We have

analyzed the influence of these fluctuations on the conver-
gence of Nf = 3 χPT.
(i) For the physical value of ms, we assume a global
(though possibly slow) convergence of the SU(3) × SU(3)
chiral expansion applied to low-energy connected QCD
correlation functions and to observables that are linearly
related to the latter: typical examples are F 2

P , F 2
P M2

P ,
F 4

πAππ→ππ , F 2
πF 2

KAπK→πK , etc. For such quantities, the
bare expansion (as defined in Sect. 2) expressed in terms
of the order parameters Σ(3) and F0 and in powers of
quark masses mu, md, ms is likely characterized by rela-
tively small higher order corrections starting at NNLO.
(ii) Vacuum fluctuations of s̄s pairs affect in particular the
next-to-leading-order (NLO) contributions to F 2

πM2
π and

F 2
π through terms msL6 and msL4, which appear in χPT

with large coefficients. They reflect Zweig-rule violation
and large 1/Nc corrections in the scalar channel. Unless
L6 and L4 are very precisely tuned to their critical values
Lcrit

6 (Mρ) = −0.26 · 10−3, Lcrit
4 (Mρ) = −0.51 · 10−3, the

vacuum fluctuation NLO contribution to F 2
πM2

π and/or
to F 2

π becomes of comparable size or even larger than
the corresponding leading-order (LO) contributions given
by the three-flavor condensate Σ(3) and by the pion de-
cay constant F 2

0 . In this case, the expansions of X(3) =
2mΣ(3)/F 2

πM2
π and Z(3) = F 2

0 /F 2
π in powers of ms break

down despite the convergence of F 2
πM2

π and F 2
π . As a re-

sult, X(3) and Z(3), which measure Nf = 3 order parame-
ters in physical units, could be suppressed well below one,
implying an instability of Nf = 3 χPT.
(iii) The instability due to vacuum fluctuations upsets the
standard perturbative reexpression of the lowest order pa-
rameters Σ(3) and F 2

0 as well as quark masses in favor of
an expansion in terms of physical Goldstone boson masses,
Fπ and FK . Instead, using the four mass and decay con-
stant Ward identities, we non-perturbatively eliminate the
LECs L4, L5, L6, (L7), L8 in terms of the order parame-
ters X(3) and Z(3), the quark mass ratio r = ms/m and

the four NNLO remainders dπ, dK , eπ, eK , which collect
all higher order contributions starting at O(p6). This pro-
cedure amounts to an exact resummation of the standard
perturbative reexpression of X(3), Z(3) and r and it ap-
plies even if the vacuum fluctuations suppress X(3) and/or
Z(3).

(iv) In this way, values of the basic order parameters X(3),
Z(3) and the quark mass ratio r can be constrained by ex-
perimental data as long as NNLO remainders are under
control. In order to gradually incorporate theoretical con-
jectures about the order parameters X(3) and Z(3) (e.g.,
their positivity, paramagnetic inequalities), and on higher
chiral orders (i.e., NNLO remainders), we propose to use
Bayesian statistical inference. In this approach, previous
knowledge of the parameters is encoded into the prior
probability distribution function. At this step, some de-
gree of arbitrariness is introduced, but the dependence on
the choice of the prior is guaranteed to be weak if the data
are significant enough.

(v) We have applied this procedure to the three-flavor
analysis of elastic ππ scattering, in order to test the ability
of the recent high-precision low-energy data obtained by
the E865 Collaboration [14] to constrain three-flavor chi-
ral dynamics. We have shown that, for the present state
of experimental precision, the data cannot determine the
two fundamental Nf = 3 chiral order parameters X(3)
and Z(3). However, the low-energy ππ data is sufficient
for us to put a quantitative lower bound on the quark
mass ratio r = ms/m ≥ 14 at the 95% confidence level,
and to determine the corresponding probability distribu-
tion function.

(vi) The Bayesian machinery is suitable for incrementally
including further experimental information on low-energy
observables, and seems especially well adapted in this con-
text, in view of an extension of our analysis to valence s-
quark effects. In particular, πK scattering appears to be
rather promising, due to recent progress obtained through
the solution of the corresponding Roy–Steiner equations
[33]. We plan to address this issue in future publications
[26].

(vii) The possible instability of Nf = 3 chiral expansions,
and the prescription examined in this paper to treat it, are
also relevant in other respects. One example is the eval-
uation of K → ππ weak matrix elements from sum rules
based on OPE: in particular, the extrapolation of the OPE
condensate from the chiral limit to the physical values of
the quark masses would not be possible on the basis of
the usual treatment of Nf = 3 χPT formulas. A similar
remark applies to the study of the quark mass dependence
of Goldstone boson masses on the lattice and to determi-
nations of the LECs by these means. We have shown how
such a program could be pursued even in the presence
of large fluctuations, provided simulations with three dy-
namical flavors would be available with quark masses as
small as the physical strange-quark mass. It remains to be
seen whether such simulations, with proper control of the
continuum and thermodynamic limits, will be feasible in
the near future.
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(viii) In order to detect possibly large s̄s fluctuations, an-
other strategy is conceivable: one might calculate and an-
alyze as many quantities as possible within the standard
SU(3)×SU(3) χPT, up to and including two loops, using
the standard perturbative reexpression of low-energy pa-
rameters [17,20]. The instability of such χPT expansions
could appear as an internal inconsistency of the result of
corresponding fits with the assumptions underlying the
perturbative treatment of standard χPT.
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A Mass and decay constant identities

We recall for convenience the chiral expansion of the Gold-
stone boson masses as discussed in [11,13]:

F 2
πM2

π = 2mΣ(3) + 2m(ms + 2m)Zs + 4m2A

+4m2B2
0L + F 2

πM2
πdπ, (143)

F 2
KM2

K = (ms + m)Σ(3) + (ms + m)(ms + 2m)Zs

+(ms + m)2A + m(ms + m)B2
0L + F 2

KM2
KdK ,

(144)

The case of the η meson is discussed in Sect. 3.4 and below.
The connection with the standard LECs of the Nf ≥ 3
effective Lagrangian is

Zs = 32B2
0

{
L6(µ) − 1

512π2

[
log

M2
K

µ2 +
2
9

log
M2

η

µ2

]}
,

(145)

A = 16B2
0

{
L8(µ) − 1

512π2

[
log

M2
K

µ2 +
2
3

log
M2

η

µ2

]}
.

(146)

The remainders F 2
P M2

P dP collect all higher order terms,
starting at the next-to-next-to-leading order O(m3

q), in
agreement with the definition in [13], but different from
that in [8]. The combination of chiral logarithms L is [13]

L =
1

32π2

[
3 log

M2
K

M2
π

+ log
M2

η

M2
K

]
. (147)

Similar expressions are derived for the decay constants:

F 2
π = F 2(3) + 2(ms + 2m)ξ̃ + 2mξ (148)

+
1

16π2 2mB0

{
log

M2
η

M2
K

+ 2 log
M2

K

M2
π

}
+ F 2

πeπ,

F 2
K = F 2(3) + 2(ms + 2m)ξ̃ + (ms + m)ξ + mB0L

+F 2
KeK . (149)

The scale-invariant constants ξ and ξ̃ are related to the
LECs L4 and L5 as follows:

ξ̃ = 8B0

{
L4(µ) − 1

256π2 log
M2

K

µ2

}
, (150)

ξ = 8B0n

{
L5(µ) − 1

256π2

[
log

M2
K

µ2 + 2 log
M2

η

µ2

]}
.

(151)

The remainders F 2
P eP collect the NNLO terms O(m2

q).
Equations (32), (40) and (41) in Sect. 3.2 can be obtained
by combining the previous identities to eliminate the
O(p4) LECs A, ZS , ξ, ξ̃.

The identities for the η can be recast in a form remi-
niscent of the Gell-Mann–Okubo formula:

3F 2
η M2

η − 4F 2
KM2

K + F 2
πM2

π

= 4(r − 1)m2 {(r − 1)(2Zp + A) − B2
0L
}

+3F 2
η M2

η dη − 4F 2
KM2

KdK + F 2
πM2

πdπ , (152)

3F 2
η − 4F 2

K + F 2
π

=
2mB0

16π2

[
(1 + 2r) log

M2
η

M2
K

− log
M2

K

M2
π

]

+3F 2
η eη − 4F 2

KeK + F 2
πeπ . (153)

The η-mass identity involves the new LEC Zp = 16B2
0L7.

We have also introduced the NNLO remainders dη and eη

of order O(m2
q).

B χPT and Bayesian statistical analysis

One of the main achievements of SU(3)×SU(3) chiral per-
turbation theory consists in providing a consistent frame-
work that includes all the constraints of chiral symme-
try when one analyzes processes involving the Goldstone
bosons π, K, η. This allows one to express observables as
expansions in powers of momenta and quark masses up
to a given order. Each order involves new low-energy con-
stants whose values cannot be determined from chiral con-
straints, but nevertheless provide very much needed in-
sight into the mechanism of chiral symmetry breaking.

We would like therefore to pin down (or at least con-
strain) LECs arising at first order in SU(3)×SU(3) chiral
expansions – for instance, the quark condensate and the
pseudoscalar decay constant in the limit mu, md, ms → 0
– by using available experimental information.

We must therefore combine several sources of informa-
tion.
(1) Experimental measurements of observables αi:
P exp

j (αi). Their values have (possibly correlated) uncer-
tainties which are described by probability distributions.
In the theoretical basis that underlies the determination of
these observables no use of χPT should have been made.
For instance, solutions of Roy equations were required in
addition to experimental phase shifts to extract ππ scat-
tering parameters. As explained in Sect. 2.3, a reasonable
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choice of observables can be derived from QCD correlation
functions of currents and densities, away from kinematic
singularities; e.g., one may choose ππ subthreshold param-
eters.
(2) Relations between the observables and theoretical pa-
rameters Tn: αi = Ai(Tn). We have explained how mass
and decay constant identities can be used to eliminate
some O(p4) LECs in chiral expansions of observables. We
have chosen the theoretical parameters to be X(3), Z(3),
r, and remainders that comprise NNLO and higher order
corrections.
(3) Theoretical constraints/assumptions about the values
of Tn: Ck(Tn). Chiral order parameters are constrained:
for instance, vacuum stability requires X(3) ≥ 0, whereas
Z(3) is positive by definition. We have also theoretical
prejudices about NNLO remainders if we require an over-
all convergence of chiral expansions: the relative contribu-
tion of NNLO remainders must remain small.

It is quite easy to construct from these elements the
likelihood function

L(Tn) = P (data|Tn, H) =
∏
j

P exp
j [Ai(Tn)] , (154)

which is the probability of obtaining the observed data
once a particular set of theoretical parameters is given
(within the theoretical framework H). However, what
we want is not L, but rather the reverse quantity
P (Tn|data, H), i.e., the probability of having a particu-
lar set of theoretical parameters, taking into account the
data.

This problem of “statistical inference” has a long his-
tory. A possible solution is provided by Bayesian analysis
[22], which relies on Bayes’ theorem:

P (Tn|data, H) =
L(Tn) · π(Tn|H)∫

[dT ] L(Tn) · π(Tn|H)
, (155)

where π is the “prior” distribution, i.e., the probability
associated with the theoretical parameters before the ex-
perimental results have been taken in consideration:

π(Tn) = P (Tn|H) =
∏
k

Ck(Tn) . (156)

The denominator on the right-hand side of (155) is just a
normalization factor. The marginal probability associated
with a given theoretical parameter is obtained by inte-
grating the joint probability P (Tn|data, H) over all other
theoretical parameters.

Let us mention that there is some arbitrariness in
each of these ingredients. We could have chosen other ob-
servables, such as combinations of scattering lengths in
which one-loop chiral logarithms cancel [32]. We could
have added all O(p4) LECs to the set of theoretical pa-
rameters, and kept “bare” chiral expansions as relations
among the observables. Finally, we could have computed
O(p6) contributions to NNLO remainders and used reso-
nance saturation to estimate the size of the remainders,
following the procedure in [17].

In the present paper we have advocated a particular
choice of observables as constituting a sensible starting
point for a Bayesian analysis of data from ππ and πK
scattering. Other choices of prior p.d.f.’s for the theoreti-
cal parameters (especially for the NNLO remainders) can
be considered, as long as they are well motivated. How-
ever, the posterior probabilities should not be strongly
sensitive to the choice of priors when a sufficient amount
of experimental data is included in the analysis.

C Integration procedure for the analysis
of ππ scattering

In Sect. 4, we apply Bayesian methods to perform a three-
flavor analysis of ππ scattering, constructing a joint prob-
ability P (r, Y, Z, δ|data). This gives the probability of hav-
ing a particular choice of quark mass ratio r, order param-
eters Y (3) and Z(3) and NNLO remainders δi=1...7, once
ππ scattering data is taken into account. By integrating
over NNLO remainders, we obtain the joint probability

P (r, Y, Z|data) =
∫ 7∏

i=1

dδi P (r, Y, Z, δ|data) (157)

∝ π(Y, Z) θ(r − r1) θ(r2 − r) θ[Z(3)] θ[Y (3)]

×
∫ δmax

1

dδ1

∫ δmax
2

dδ2

∫
δmin
6

dδ6

∫
δmin
7

dδ7

∫
dδ3 dδ4 dδ5

×
7∏

i=1

G(δi, σi) exp
(

−1
2
VT CV

)
θ[Y max − Y (3)] ,

(158)

where ∝ means “equals, up to a (numerical) normalization
coefficient”, C is the error matrix for the experimental
data, (98), G(δi, σi) is the Gaussian function of δi with
width σi, and V is defined in terms of the chiral series for
αππ and βππ, (96) and (97):

V(r, Y, Z, δ) =

(
A(r, Y, Z, δ) − αexp

B(r, Y, Z, δ) − βexp

)
. (159)

Before any numerical evaluation, we can analytically
compute some of the integrals. δ4 and δ5 have the same
width σ4 = σ5 and appear only in the experimental dis-
tribution obtained from ππ scattering. We can therefore
diagonalize the latter:

RTR = RRT = I , RCRT =

[
C1 0
0 C2

]
, (160)

to perform the integration9 over δ4 and δ5:∫
δ4 δ5 G(δ4, σ4)G(δ5, σ4) exp

(
−1

2
VTCV

)
9 A similar procedure can be followed in the case of different

widths for the Gaussian prior p.d.f.’s for δ4 and δ5.



226 S. Descotes-Genon et al.: Resumming QCD vacuum fluctuations in three-flavor Chiral Perturbation Theory

∝ exp
[
−1

2
(D1W1 + D2W2)

]
, (161)

Di =
Ci

1 + Ciσ2
4

, W = R · V(r, Y, Z, δ1,2,3; δ4 = δ5 = 0).

(162)

The integrals over δ6 and δ7 are simply Gaussians inte-
grated over semi-infinite ranges, and are thus given in
terms of the error function Erf. We obtain finally

P (r, Y, Z|data)
∝ π(Y, Z) θ(r − r1) θ(r2 − r)θ[Z(3)] θ[Y (3)]

×
∫ δmax

1

dδ1

∫ δmax
2

dδ2

∫
dδ3

3∏
i=1

G(δi, σi)

× exp
[
−1

2
(D1W1 + D2W2)

]

×
[
1 − Erf

(
δmin
6√
2σ6

)][
1 − Erf

(
δmin
7√
2σ7

)]
×θ[Y max − Y (3)] . (163)

In order to obtain the marginal probability for either r,
X(3), Y (3) or Z(3), we must perform a numerical integra-
tion over three remainders to obtain the joint probability
P (r, Y, Z|data), and then integrate the result over two of
the remaining three parameters. We restrict the integra-
tion over the remainders δ1,2,3 to the range [−5σi, 5σi] (the
upper bound can be smaller for i = 1, 2 due to the positiv-
ity constraints (107) and (108)). The range of integration
for the two parameters that remain to be integrated is
given by the theoretical constraints discussed in Sect. 4.

In order to appreciate the impact of the data in the
Bayesian framework, it is quite interesting to consider the
marginal probabilities obtained when no experimental in-
formation is included. In our particular case, this amounts
to replacing the experimental distribution Pexp(α, β) by 1,
or equivalently to setting the matrix C to 0. We obtain
then the following p.d.f.:

P0(r, Y, Z|data)
∝ π(Y, Z) θ(r − r1) θ(r2 − r) θ[Z(3)] θ[Y (3)]

×
∫ δmax

1

dδ1

∫ δmax
2

dδ2

∫
dδ3

3∏
i=1

G(δi, σi)θ[Y max − Y (3)]

×
[
1 − Erf

(
δmin
6√
2σ6

)][
1 − Erf

(
δmin
7√
2σ7

)]
. (164)

P0 is just the normalized prior p.d.f. and corresponds to
the “phase space” allowed by the theoretical constraints
and assumptions on the various parameters. The result-
ing marginal probabilities can be found in Sect. 4, where
they are compared with the ones that include experimen-
tal knowledge of ππ scattering.
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